THE AMPHIPOD SUPERFAMILY DEXAMINOIDEA ON THE NORTH AMERICAN PACIFIC COAST; FAMILESATYLIDAEANDDEXAMINIDAE:SYSTEMATICSANDDISIRLBUTIONAL ECOLOGY.

by E. L. Bousfield ${ }^{1}$ and J. A. Kendall ${ }^{2}$

Abstract

Based mainly on study material from North American Pacific ccaslal maritie waters (from the Bering Sea region to thorthem Califormia), this study treats the systematios and distributional coology of regional family and subfamily members of the gammarstean aniphipod superfamily Dexam inoidea. Cluster analysis of 22 component genera supponts subdivision of this taxomomically difficult group into two principal families, the primitive, thin bodicd Alylidae, and the more advanced, broad bodied Dexaminidac. Family Atylidae enompasses the sublanilies Alylinae Leath 1814 (revised status); Anatylinae Bulycheva 1955 (revised status), Lepechinellinace Scheflenberg, 1926 (revised status); and Nototroplinate, new subfamily. Family Dexaminidachereenconpassers subfanily Dexamininac Leach, 1814(revised status); Prophliantinae (Nicholls, revised Bannaril, 1970); Dexaminoculinae, new subfamily, and Polycheriinae, new subfamily.

Material from the stody region contains representatives of both fanilies and three component subfarnilies. Within sublamily Alylinae are newly described and figured Atylus georgathes, new species and A. boreatis, new species. Newly recorded from the study region and/or religured are: Ardus athassovi (Gurjanova, 1951), A. bruggend (Gurjanoya, 1938) A. collongi (Gurjanova, 1938), and A. Jevidensus Barnard, 1954, A. tridens (Alderman, 1936), and the type species A. carinatus J. C. Fabricius, 1783 . Rediagnosed and religured from the westem Pacific region are Atywus ekmani Gurjanova, 1938 and A. rlowi Bulycheva, 1952. Based on analysis of the literature and records from the western Paciitic, subfamily Anatylinae here encompasses Anarvus pavorskif Bulycheva, 1955 , and Kamehatwh japonicus(Nagata, 196I). Subfiamily Nototropiinae contains the western Pacific Nototropis sp. (cl. guntatus Costa) and the abyssal species, Arylus aberrantis (Barnard, 1962), here transferred from subfantly Lepechinellinate in the mionotypic new genus A berratylus.

Within family Dexarninidae, subfamily Polycheriinae is moderately well represented in amphi-North Pacific waters. Newly destribed and figurch are Polycheria carinata, new species, and l, mixillae, new species, and Porviferia oshomi Caman, 1898 is redescribed. Subfamily Prophliantitiae, is represented in Asiatic Pacific enastal watess ty atrout a dozen described species, but in the North American study region, the sole species identified to date is Gruernees redumcans (1. L. Barnard, 1958). Subfamily Dexamininac is well represented in the westem North Pacilit by species of Paradexamine hut is absent from the enstern North Pacifice.

Biogengraphically, within farnily Alylidae members of the primitive subfamily Atylinae are endemic to the North Pacific region. From there, members of the more advanced Nototroptinae and Anatylinae have apparently radiated into the Indo-Pacific and former tenhyan wam-water regions. Members of subfamily Lepechinellinae, having a conumon ancestor with the Nototropiinae, bave bectme abyssal. Nearly all members of the more advanced lamily Dexaminidac are wann-temperate and tropical but a few species of the most advanced sulfartily, Polycherinae, bave penetrated into the cold temperate North Pacific, apparently from two different sources. The sole North Americun Pacific prophliantin species appears inore closely related to counterparts in the North Atlantic region than to prophliantins of the western North Pacific.

Excepl fer the abyssal Lefechinctlinae, most dexaminoidzans are litoral-sublithoral in depth range and all are exclusively marine. In life style, they thainly nessle on the bottom, in sea grass clumps, coral clusters. emply shells, or in pits excavated in the tests of colonial invernebrates, but the Prophliantinae apparently burrow in soft sediments. Species densities are seldom highand total biomass is low, presumably with little significance in regional food energy cycles. The groap may be considered a specialized relict offshoot of early gammaroidean ancestral lypes, from which may have also evol ved the closely related, but ecologically more successful, ampeliswoidean amphipods that are tube-dwelling and dephosit-Feeding in soft sediments, world-wide.

[^0]
INTRODUCTION

The superfamily Dexaminbidea encompaskes a group of benthic nestling ampdipods that uccur mainly on hard substrata in tropical and warm temperate regions of the world. The number of described species is relativey sinall (<200), and populations atre generally of low density. However. morphological diversity within the group is relatively high (ct. Gammamiflea with 5 limes the number of species). possibly rellecting the wide varicty of solid (and some sedimentary) substrata on which yarious subgroups of Dexaminoidea have been modified for existence.

The animals are characterized by varionsly carinated ot dorsally processiferous bodies fiused usomome segments 2 , 3, a tendency toprehensility (subchelation) of peraeopods 37, and a reproductive life style that involves mating freely in the water columit. The gnathopods are weakly (or not) sexually dimophic, but in the type genus Dexamine and close relatives, the anteriormargin of the propod of gnathopod 1 (in the male) bear's a characteristic nothor or shatpexcavation. of presumed (but unknown) reproductive function. Allhough basically frec-living, with well developed peraeopods, pleopods, and tail Fan, the animals are typically slow-moving, even sedentary, in vegetative life style. Most species are deposit of trypton feeders, froquently employing specialized setae of the anterinac and anterior peracoponts to rake in organic fool materian, from a nearly lixed position on the botom. Members of the specialized genus Polycheria are commensal on the tests of colonial tunicates and sponges where they live "upside down" in pits excavated in the surface of the host. However, tulike the closely related ampeliscoideans, of similar "upside-down" feeding style, dexaminoideans lack spinning glands in the anterior peracopods aril are incapable of tube building.

The classification of the group within soborder Gammaridea has gone though an early period of stability, followed by a recent period of relative inslability, Early workers (e.g Sars, 1895 ; Stebbing, 1908) maintained the atylids and dexaminids as separate familics, und recognized the close similarity of atylids to the basic "Gammaride" amphipod type. Such stability was extended to the Lepechinellidae (Stebbing, 1908) and the Prophliantidae (Nicholls, 1939) by more recen major workers (e, g. Curjanova, 195]; Barnard, 1969a), Soon aftenwards, howeyer, a developing trend to fusion of related higher taxa, led to submergence of alldexaminid groups within faroily Dexaminidae (e,g. BellanSantini, 1982) or to fomal creation of a new superfamily group, Dexartinodea, in which fanily levels or distinction could be mainuained (e.g. Boustield, 1979, 1982).

Dexaminoidean amphipods are among the few regional North Pacific gammaridean groups that have recesived signiffcant taxonomic attention. Withis the Dexaminidae proper, Porpherid osbormi was described from Califomia by Calman(1898). Within family Atytidae, the genus Atylus had been unk nown from the Pacific coast of Nortli America prion to Aldennan's (1936) description of A. tridens from

Califonia. That recond waschosely followed by Gurjanova's (1938) description of A. collingi from eastern Siberia and Bering sea regions, and by J. L. Barnard's (1956) description of A. levidensus from Califormia. Based on CMN material collected along the Pacitic coast of Canada, 1955 - 1959. Mills (1962) provided illustated descriptions, keys, fad distributional date on those three spectes from the constal marine region of British Columbia. Further records from California were added by Bannard (1962, 19696 and Cadien (1991). Barnard (1975), and Staude (1987) included dexaminids in keyod and illustrated popular regional works and Austin (1985) summarized records frym the cold temperate northeast Pacilic region. Within hamily Prophliantide, Gueruen (Prinassus) tedtumans Barnard had been recorded widely atong Califomman coasts by Batnard (1958, $1969 \mathrm{~b}_{4}$ 1972) atd Cadien (1991). The biology of Polyeheria owhormi was studied in detail by Skogsberg \& Vansell (1928), and sone members of the Lepechinellidae were recorded from the castem Pacific abyss by Bamand (1967. 1972).

In the western North Pacifte, the early work of Gurjanovit (1938). and Stephensen (1944) was encompassed by Gurjdnova (1951). Subsequently Eulycheva (1952, 1955) proposed further species of Arybus, Polycheria and Anatybs: and Bitstein \& Yinogradow (1955) reconded an abyssal lepechitnellid. From Japanese waters Nagata (1961) described the alverrant thy fus japonicus. The mare recent work of Gamo (1981) on Jeepechinetha, of Hirayama (1984a,b, 1984. 19863 on species of Paradexamine, Polycheria. Guermea, and Atylas, and Ishimaru (1987) on Guernea, and others, has been sumnarized most usefolly in a catalogue of dexaminid amphipods of Japan by lshimara (1994).

Dexamiaid systematios and distribution have been treated womprehensively gind most usefully by Bamard \& Karaman (1991). However, the lumping of diverse sulbgroups within obe tamily, with recognition of only one additional subfanily and no superfamilies, and the use of loo few, or plyletically non-significan, character states in cliagnoses and keys, tends tor create problems of itwonsistency in taxomonic analysis and an unwieldiness of classification that may also apply elsewhere within gammadean classification (e, within family Eusiridae). Our purpose here is to (1) develop new basic taxonomic information and analytical crileria froma study of the presend North Facific materiall; (2) incomporate this information with previous knowledge as a basis for numerical analysis of natural relationships between higher taxoromic categories, and (3) modify existing classifications in a manter that more consistently renects distributional, ecological and hehavioural, as well as taxonomic antu phyletic. differences between the subgroups.

The authors have rocently examined extensive new matcrial in the amphipod collecton of the Citnadian Museum of Nature (CMM), Otlawa, that supplements the earlier material of Mills (1961), and material from the Bering Sea region (Peter Slattery expeditions) and elsewhere. Station lists for CMN museum material, 1955 = 1980, are provided
by Mills (1962), Bousfield (1958, 1963, 1968), Boustield and MeAllister (1963), and Boustield and Jarrett (1981).

This report proyides an exlensive review of the systematics, distributional ecolsegy of the dexaminoidean fauna From the Norla American Pacific coastal inarine region and relades it phyleticalty and biogeowraphically to counterpart launas of the western Norith Pucilic and elsewhere in the wirld.

ACKNOWLEDGEMENTS

This study could not have been completed without the help of many biological resarch aqencies and interested colledgues. The field surveys were carried out with the full support of the National Museum of Natural Sciences (now Canadian Museum of Nature) in Ottawa, and recelved vital Hechnical assistance and ship-time from Canadian Pacific research centres and their staffs. These included the Pacific Biological Station, the Bamheld Marime Station, the Pacific Environmental Insitute, the Royat British Columbia Museum, the University of Victoria, L'niversity of British Columbia, and the Institute of Ocean Sciences. Sidney, and, in the United States of Annerica. the Friday Harbor Marine Latoratory and the College of Fisheries, University of Washington. We are particularly indebted to Dr. Perer Slatery, Moss Landing, CA.. for provision of material from the Beriny sea region. Full acknowledgement to indiciduals of those agencies, and in many others, are prowided in the previously published slation lisks (above), to whom we again express our deepest apprecialion. We are grateful for the splendid published work of our colleggues elsewhere on whoe illustrations we thave drawn dreely in developmentol taxonomic and phyletic relationships. We thark especially Museum colleagues Ed Hendrycks and Judith C. Price for turatorial and calalogning assistance. Preparation of the line illuguations was most capably assisted by Susan LaurieBourque, Hull, Québec. We are grateful toDr.J. D. Thomas, USNM, for review of the text and kind pennission to adapt illustrations from the pertinent research publications of the late J. L. Barnard. Wotk by the senior author, and by the astish, was also supported by operationtal grants from the Royal Ontario Museum, Toronto, and the Natural Sciences and Engineering Research Council, Ottawa.

SYSTEMATICS

DEXAMINOTDEA Leach (revised Bousfield)
Dexaminoideat: Boustreld, 1979: 330.-Bousfield, 1982 : 277.-Bouslield, 1983: 263,-Schram. 1986: 180.

Dexaminidae Barnard, 1970; 161, -Lshimaru, 1987: 1412 -Barnard \& Karaman. 1991: 260.

Families: 1. Atylidte G, O. Sars. 1882 : 26. Includes subtamilias Atylinae Sars (revised status); Lepechinellinae Schellenberg 1926 (revised status); Nototropiinae, new subfannily" and Anatylinae Bulycheva, 1955 (revised status).
2. Dexaminidae Leach, 1813/14:432. Includes sublamilies Dexamininae Leach (revised status); Polycherriinae, new subtamily: Dexaminoculinae, new subfamily; and Prophliantinae Nicholls. 1939 (revised status, Barnard 1970).

Diagnosis (after Bousfield, 1982): Rostrim present. variable. Body (especially urosome) usually willii middorsal, andolien dorso-lateral, carinationsor teeth. Urosome segment 1 dotsally carinate. Urosome segments 2 \& 3 coalesced, ofien dorsally caritate. Sexual dimorphism pronounced in cyes, amtenae, aropod 3, and coxal gills, but weakly expressed in gnathopod 1. Eyes pigmented and multi-faceted, lacking in bathyal forms. Antennae variable; peduncles of flagella (male) antied with brush setae, Antenat 1 , peduncular segment 2 usually longer than 1 ; seg. ment 3 shott, actessory flagellum minute or lacking. Antenna 2 uending to shorlening (fertale) flagellum elongate, non-calcelate (mate).

Mouthparts trending to modification. Upper lip entire. Lower lip, inner lobes yariously developed. Mandibular molar triturative, bur trending to reduction; left lacinua basically 5-dentate, palp warious, weak or lacking. Maxilla $I_{,}$ inder plate 0.8 selose, outer plate 7-11 spinose: palp often 1-segmented. Maxilla 2, inner plate the smallet, trending to loss of marginal setae. Maxilliped, outer plate largen inner plate and palp trending to reduction in size and loss or setae.

Coxal plates $1-4$ medium to small, oftent notched or incised below; coxa 5 strong, often antero-lobate. Grathopods small, weakly subchclate (palms convex), generally dissimilar in form. Gnathopod 1 , propod toay be distine= tively sexually dimerphic.

Peracopods 3 \& 4 subequal, or peracopod 4 smaller, trending to shortening of segment 5. Peraeopods 5-7 yarhable in fom and size, bases unequally broad, trending to linearity: segment 5 variable; segment 6 and dactyl trending to subchelation.

Pleopodz usually strong, especially in male. Uropods I \& 2, rami unequal, Ianceolate, apically spinose, Uropod \$ aequiramous; tami lanceolate, outer ramus 1 -segmented, margins setose in male, often so in female.

Telson bilobate. lobes variously fused basally, apices spiniese, notched or linely crenulated.

Coxal gills sac- IVke, on peraeopods 2-7(6), oten pleated or phylloform, especially in male. Brond lamellae medium broad or strap-like, trending to linearity.

Reproductive Life Style, synchronous, mating Ireely in water column (presumed lrom morphology - nearly all members).

Taxotomic and Biogeographic Commentary: Cluster analysis of all 22 generic-level taxa within superfamily Dexaminoidea recognizedhere (p. 56) supports the validity of the family and subfamily components listed above, and detailed in the following systematic accounts. The most primitive subtamily, Atylinae is endemic to the boreatsubaretic North Pacific; others are components of mainly Indo-Pacific launas marginally present in thes tegion.

FIG. 1. ATYLIDAE: TYPICAL CHARACTER STATES
A-Rostrum; B-Urosome 1; C-Antenna 1; D-Coxa 1; E-Mandible; F-Gaathopod 1; G = Peracopods $\mathbf{3}-4 ; \mathbf{H}$ - Peracopods 5-7; J - telson; K - coxal gills 2-5; (from text plates)

FIG. 2. DEXAMINIDAE: TYPICAL CHARACTER STATES
A- Rostrum; B - Antenna 1; C - Cōxa 1-4; D-Gnathopod 1 (male); E-peraeopods 3-4; F - peraeopods(5-7 bases) G - peraeopods 5-7 (distal); H - abdomen dorsum; J- Pleon plates 2-3; K - telson (from text plates)

KEY TO WORLD FAMILES OF DEXAMINOIDEA

1. Body slender; antennae medium-long; antena 2 not reduced (Fenale), mandible asmally with palp; maxila I, palp 2-segmented; maxilliped almost nomal; coxa 5 shallow; strongly antero-lohate. Atylidae.
-Body short, boodt; antema oflen short, A2 shortened (female): mandible lacking palp; maxilla 1, palp Isegmented; maxilliped palp distinctly reduced; coxa 5, broad, aequilobate; usually deep. . Dexaminidne.

Atylidae G. O. Sars

Atylidae: G. O. Sars, 1882: 26.-Stebbing, 1906: 327Barnard, 1969a: I61.-Boustield, 19g2: 277.
Anatylidae: Rulycheva, 1955: 204.-Bousfield, 1982: 277 Dexaminidac (part): Batnarth, 1970a: 164, -Bellan-Santinj, 1983: 212.—Bamand \& Karaman. 1991: 260.

Type Genus: Abydus Leach, 1815: 21, (Type A. carinahas Fabricius 1793).

Diagnosis: Body slender, Laterally compressed, Posterior peraeonand pleon var-iously carinate or mooth. Urosome] mid-dorsally carinate. Rostnom various, usually medium to strong. Antennac rhot short, antena 2 the longer. Antenra I_{+}peduncular segrent 2 subequal to segment 1 . often longer; accessory flagellum present, minute.

Lower lip, inner lobes usually lacking. Mandible with palp (fewexceptions), miturating molar, 5 -dentate lefllacinia, and several blades in spine row. Maxilla 1, palp 2-segmented. Maxilla 2 bonnal, mitioins selose. Maxilliped innes plates normal, apex spinose; palp strong.

Coxale 1-4 various, lower margins may be acute, occasionally incised, $2 \& 3$ deepest, 1 less deep. Gnathopods I \& 2 weakly subchelate. weakly sexually dimorphic: carpus various, often slender.

Peraeopods 3 \& 4 + segronent 5 usually much shonter than segments 4 \& 6 and dactyls not elongate (except in

Lepechinellinae). Pexacopods 5-7 row elongate, bases variously expanded and fobate below. somewhat dissimilar in fonm; segment 5 various. Pleopouls various usually strong. Ploon plates $1-3$, hind comers squased or acuminate. Uropod 3, rami lancolate, margins setose (esp, male) or spinose. Telson lobes nombal, short to medium, fused basally.

Cosal gills offen pleated or plaited. Brood plates broad.
Taxonomic Remarks: The family Atylidae is here subtivided tolo 4 subfanilies as diagnosed below. They are separated on character states of the key (below) for which ilfustrations ane provided in Fig. 1, and in pertinent sections of the text.

Subtamily Atylinat Boeck (revised status)

Atylinat Boeck, 1876: 320.
Atylidae Stebbing. 1906: 327.-Gurjanowa, 1951: 678.Bumard. 1969: 163.
Dexaminidae (pari) Bellan-Santini. 1982: 212.—Barnard $\&$ Kamanan. 1991: 260.

Type genus: Atylus Leach, 1815.
Diagnosis: Generally medium to lange atylide (5-40 mon'). Rostrum usually large. Posterion peracon, pleon, and

KEY TO SURFAMILIES OF ATYLLOAE

1. Peraeopods 3 and 4 closety sobequal in size; peraeopods 5-7, segment 5 distinctly sborter than segments 4 \& 6 ; antena I, peduncular segment 1 shorter than peduncular segnent 2 (always in female)

Atylinae (p. 8)
-Teraeopod 4 distinctly shorter that peracopod 3 (in distal segments): peraeopods 5-7 segment 5 not distincily shorter than segments $4 \& 5$ antenna 1 peduncular segmen 2 varivisty longer than segment 1.2.
2. Eyes laking; anterior head lolbe strongly bilid; peraeopods and datyls very slender, elongate; tetson lobes shorl, diverging distally Lepechinellinae (p. 31)
-Eyes present; anterior head lobe blunt or slightly emarginate; peraeopods and dactyls nomal length and thickness; telson lobes normal, converging distally 3.
3. Ploon segments I-3 not carinate; urosome I with simpte mid-dorsal tooth; mundible lacking palp; uropod 3, rami short, margins spinnser peracopod 5, basis nol lobate below; gills simple. Anatylinae (p. 32) -Pleon segment]-3 usually carinate mid-dorsally: urosome I wilh tooth and notch; mandible with palp (weak); uropod 3, rami lancolate, rargins setose (esp, male); peraeopod 5, basis with lower hind lobe; gills phyllifom

Nototropiituse (p. 28)
urosome usually dorsally carinate. Antennat large, setose.
Mouthpars basic. Mandibular inolar, spine row, and palp welldeveloped. Maxilla I , inter plate separate, apically setose. Maxilla 2, plate maggins setose. Maxilliped nonnal. plates and palp well developed.

Coxal plates 1-4 medium, lower marging oflen weakly incised or subacute anter-ionly, Gnathopods medium, subsimilar, weakly sexually dimorphic.

Peraeopods 3 \& 4 subsimilar in fonmand size; segment 5, distinctly shorter than segmens 486 . Peraeopods 5-7, bases broadened: segment 5 variously shorter than segments 48 6. Peraeopod 5, basis, hand lobe weak, not produced helow, Peraeopod 7, basis very broad, posterior lobe present. acule or rounded thelow.

Pleopodsstrong. Uropod 3. rami strong, matigins spinose and usually setose (boht sexts). Tetson Tobes medium to large, with aphical spine(s). Anterior coxal gills usually pleated, especially in inales.

Taxonomic and Distributional Commentary: The subfamily Atylinae presently contains at single genus, Atyus. , encompassing about a dozen species, almost all endernic to the boreal and subarctic North Pacific region. The range of morpbological variation is sufficiently great that recognition of intenal groupings (e.g. the coningi subgroup) may evenIually justiry subyeneric recogrition.

The princiapl features of subfamily Abylinad are conlgrasted with those of other subfamilies of Atylidae in Figure 1. In summary: (referted to in following text, where pertintent.

Atylus Leach, 1815

Atylus Leach, 1815: 21.-Mills, 1961: 17 (key)-Bamand, 1956:38.-J, L. Bamard, 1969: 163,-J. L. Barnard, 1970it 164-Bathard \& Karaman, $1991 ; 262$ (part). Nortropis Gurjanova, 1951: 680 + key. (paru)
Dion Amatylus Bulycheva. 1955: 205,-Tzvetkova, 1967: 391.
nonKamehamias Banaud, 1970b: 93.
Type Species: Gomatus carmans J. C. Fabricius 1793, monotypy.

Species: A. alassoy (Gurjanova, 1951); A. borealis. new species; A. bruggeni (Gurjanova, 1938); A. collimg (Gurjanova, 1938); A. ekmani (Gurjanowa, 1938); A. georgianus, new species; A levidensus (J. L. Barnard, 1956): A. rtovi Bulycheva, 1952; A. tridens (Aldermán 1936); A. Whosus Bate 1862. (A orientalis Hirayami, 1986).

Diagnosis: Large atylids ($10-30+$ mon). Rostran medjun to large. Anterior heod margin rounded, rarely bifid. Antenne moderately strongly sexualy dimophic. Ant
enna l, peduncular segment 2 not longer than 1 ; accessory matgellum minutely 1-segmented. Artenne 2, peduncular gegments 4 \& strong, often setose.

Lower lip, inner lobes weak or lacking. Mandible: molar Irituratuve; palp nomall, 3-segmented. Maxilla 1, inner plate with $4-8$ apical setac. Maxilla 2, inner plate with $1-8$ proximal plumose marginal setae. Masilliped, palp nonnal, 4-segmeated.

Coxae 1-4 mediun deep, smooth or subacule below; coxa 3 antero-distally decpest. Coxa 5 , anterion lobe broadly on sharply rounded below. Gnathopods 1 \& 2 ordinary, very weakly or not sexually dimorphic; propod ex caples nedium, usually subsimilar in length.

Peraeopods 3-7 not elongate, dactyls relatively short, Peracopods 3 \& 4 , esment 5 markedly shorter than 4 \& 6. Peracopod 5 distinetly smaller lban peraeopods 688 : basis with smatl postero-distaf lobe. Peraeopod 7, basis broad, postero-distal lobe present, rounded or acute below, Peraeopods 5-7, segment 5 markedly shorter than segments 4\&6.

Pleopods regular; pleon plates rounded latow and behind. Uropod 2 short, rami unequal. Uropod 3 strong. rami lanceolate, margins setose in male, setose andor spinose in female.

Telson lobes not clongate, fused basally, not diverging distally. Coxal gillssac-like, weakly to moderately pleated. Brood plates medium broad, not slender.

Variabless Rostrum long (lype), medium (A, collingi, A, georgiawts); posterior peraeonites carinate (type), smooth (A. borealis. A. rydovi, A. triderts); pleon carinate (type), smonth (A. borealis, A, ryovi, A. triders), gtathopod 2_{2} propod \& carpus short, stout (type), slender (A. bruggeni, A. ehmani, A willosus); peratopods 5-7, segment 5 only slighty shorter than segments $4 \& 6$ (A. willosus).

Taxonomic Cormentary: Some species of the genus Arylus, as here definu., cyverlap in some character states, with some species of Notorropis, as detned below (p.28). Hourewer, the two genera are distinguished by the characters of the subfamily key ($\mathrm{p}, 8$) and, in combination, by the larger rostrum, heavier mandibular palp, the weak (or lacking) hind lobe of the basis of peraeopod 5 , lewavier uroped 3, and the pleated, tather than phyllofom (or dendritic) anterior coxal gills, especially in the malle,

Distributional Commentary: Most species are confined to subarctic and boreal coastal marine waters of the North Pacifleregiont and are mainly benthic. Arylus carinatus is holarctic, bul A. willosws has been recorded only from the southern oceans and may not be a natural member of the genus.

Members of the genus Abylus (sens, slt) are wirtvally non-overlapping distributionally with members of the genus Notorfopis, as here detined.

KEY TO NORTH PACIFIC SPECIES OF ATYLUS*

(Character states illustrated mainly in Fig. 1. p. 6)

2. Rostrum latge ($1 / 2$ head length); uropod 3. large, mami tonder that lwide peduncle, margits with spines and setae;; telson lobes clongate. $11 / 2-2$ X basad width .
—Rostrum medium, $\| / 4-1 / 3$ head lenyth; uropod 3 medina, rami shorter than twice peduncle, margins spinose; telson lobes shor, lengh \equiv width 7
3. Gnathophel 2. propod and carpus shout, depth of each > $1 / 2$ length; perationod 7 , basis, powterior lobe large, acute below; fused urosome segments 2 \& 3 witb low mid-donsal carination; nandible, palp stout, segment 3 setose
Gnathopod 2. propod and tarpus slender, depth $<1 / 2$ length; peracopod 7 . posterior lobe small. shallowly rounded helow; lused urowome segments 2 \& 3 , dorsal pritess erect, projecting well above mid line 5
4. Peraegoms 3 \& 4 \& peraeopod 6, segment 5 short, length < $1 / 2$ segment 4; gathoper 2, propod stout, length > carpus
A. allassovi (β 11)
-Peraeopods 3 \& 4, and peraeopod 6, segment 5 medium, length $>1 / 2$ segnent 4 ; gnathopod 2 , propod small, length < carpus . A. carinatus (p. 11)
5. Eyet large; fused urosome 2 \& 3 with bifid mid-dorsal towh; uropod 3, margins of rami with spines and setac; pracopod $T_{\text {, }}$ basal lobe subaculc
A. bruggeni ($\mathrm{p}, 14$)
-Eyes small; fused urosome 2 \& 3 with single mid-dorsal tooth; uropod 3 (female), tamal margins spinose: peraeopod 7, hasal lobe rounded below. . 6.
6. Pleon segment 3 and urosome segment I with bitid mid-dorsal tooth; western Pacific, Sea of Japan
A. ekmani (p. 16)
-Pleon segment 3 and urosome I with single mid-dorsal tooth; endemic to the North American Pacificcoast

7. Coxa 4 acute below; fused urosome 2 \& 3 with low mid-dorsal tidge; gnathopod 1 , propod, postero
distal angle with 5-6 Iransverse row of stout spines

A. collingi (p.24)
-Coxa 4 rounded below, urosome segments 2 \& 3 , with erect mid-dorsal tooth; gnathopod 1 , posterodorsal. angle of propod with 3 transverse rows of spines A. georgianus (p. 26)
8. Peraeopod 6, segment 5 short ($<1 / 4$ segment 4), telson large, lengh ss width 9.
-Peraeopod 6 , segment mediam $(=1 / 2$ segment 4 ; telson short, hasat width about equal to length
A. rylowi (p.18)
9. Antentat long, flagella with mote than 20 segrients; uropod 3 (fentale), apices of rami acute telson elongate, length 1.5 X width
A. tridens (p. 20)

- Anternade shorter, Magella with fewer than 20 segments; uropod 3 (female) apices of rami rounded; elson medium, length 1.3 X width A. borealis (p. 22)

[^1]
Atylus carinatus (Fabricius)

(Fig. 3)
Gommarus carinamá J. C. Fabricius 1793: 515. Anvus carinatus Sars, 1895:471. pl. 166.-Stebbing. 1906: 328.-Shoemaker, 1920: 14E.-Shomaker, 1955: 45.Gurjanova, 1951:679,-Dunbar, 1954; 762.-Barnard 1975, Fig. 61.—Barnard \& Karantan. 1991: 262.

Material Examined: North-west Territorics: Slidre fiond, Ellesmerc I., Atclic Biol. Sta.. FRB, Canadat July 25, 1962 - I male (22.0 mm) (slide mount); 1 female of (28.0 mm) (slide mount). Many specinens in CMN Canadian arctic collections: none from immediate study region.

Diagnosis Femate (25.0-30.0 mm): Body large lateratly condressed. Peraeon and pleon segments wilh middorsal ridge, increasingly elevated as carinations on perteon segments 5-7, pleon $\mathrm{F}-3$, and wrosome segment I. Fused urosome segments I and 2 with low mid-dorsal and parired dorso-lateral rilges. Head mostrum large ($1 / 2$ headlength), anterior bead lobe blurn, slightly enarginate. Eye small. Artemna 1, peduncular segments I \& 2 subwqual in length, vetose posteriorly; accessory flagellum small, 1 -stgmented. Anlenna 2 slightly the longer, peduncular segments heavily setose posteriorly.

Lower lip lacking imer lobes. Mandible: molar large. strong; spine row with 5-7 blades: lef latinia 5 -dentate; palp nonnal, strong. Maxilla ! , inner phate with 7 apical setae: palplarge, 2 -segmented. Maxilla 2 innerplate with 1-3 stoul plumose inter manginal setae. Maxilliped monnal, palp strong.

Coxal plates 1-4 medium deep; coxal shortest directed anteriorly; coxat 3 , lower matgin anterionly subacute. Coxa 5. anterior lobe broadly rounded. Gnathopods $1 \& 2$. very weakly sexually dimorthic: carpus and propod relatively short, deep, subequal in length,
Peratopols 3 表4, segment 5 shorter than segments 4 娄 6 . dactyls stoul. Peraerpods $5-7$ (espectally bases) somewhat dissimilar in fonn and size; seement 5 slightly shorter than corresponding seegments 4 \& 6. Peratopods 5 \& 6. 1 wwer hind low very small, not produced. Peraeopod $7+$ basis broad, posiero-distal tobe rounded.

Pleon plates I- 3 broad, hind comers squared, Uropod 1 , rami lanceolate, subequal. uropod 2 , outer ranus markedly shocter than inner. Uropod 3, rami narrowly lancect-late, s 3 X peduncle; margins setose in feriale and male.

Telson lobes deenty separated, not diverginge, cach with apicial and subapical spines. Coxal gills large, sac-like, on peraeopods 2-7, anterior gills (male) weakly pleasel basally.

Distributional Ecology: Holarclic, in North America south to the Saguenay ford in the cast, and northern Beringe Sca(Kotzebue Sound) in the wesl (Shoemaker, 1955) mainly in shatlow coastal waters ($0-50 \mathrm{~m}$), along mixed stony and silty shores. The species has been recorded from the stomach
contents of warious arctic shallow-water fishes, and from eider ducks, and bearded and ringed seals (Dunbar, 1954).

Taxonomic Commentary: Arylus carinatus is adistinctive species of the genus that exhibits several plesiomorphic character states. Thesc include the accessory flawellum, strongly tarinated dorsum of the posterior thoracic and abdontinal scegmens, wand the strongly marginally setose rami of uropod 3 (both sexes). As the type of the genus Arvitus its conbination of character states separate it al genus level from Anarylut pavani Bulycheva, 1955, and from Noforopis sminti (Goes, 1866) with which A, carinatus overlaps distributionally in hith aretic and subarctic waters.

Atylus atlassovi (Gurjanova)

(Fig. 4)
Notoropis anlasyovi Gurjanova, 1951: 690, figs. 77A. B. Atydar atassovi Mills. 1961: 19 (key minly), Barnard \& Karaman, 1991: 262.

Material Examined: Bering Sea region: Amchitka Island, Constantine Harbor, C. E. OClair coll., Oct. 5, 1969 July 14, 1970: 4 lots with 15 specimens, including males, fenales, and immatures; female ov. (20 mm) (slide mount) figtd. St. Mathew Island, Walrus Cove, P. Slatery coll, June 29, 1983,- I male (28.0 mm) (fig. 'd) CMN collections.

Diagnosis. Female (20.0 mun): Body large compressed. Peraeon segments each with shallowily indented mid-dorsal ridge, slighty elevated to weak carinations on segments 6 \& 7 . Mid-dorsal carination weak on pleon segments 1 -3, strongon urosome 1 . mediumon fused urosome segments $2 \& 3$, Head: rostrum lage ($>1 / 2$ head length); anterior thead lobe broud, shallowly imarginate. Eye mediun, vertically ovale. Antenna 1, peduncular segment 2 not konger thani I, hind margin thickly short-setose; peduncle 3 short: accessory flagellum mirtule. Antenna 2, peduncular segments 4 \& 5 stom, anterior and posterior margins setose.

Lower lip lacking inner lobes. Mandible: molar strong; spine row with 8-10 bades and accessory setae: left lacinia 5 -dentake; paip stout, setose. Maxilla 1, inneri plate with 1012 apical setae; palp stoul. 2-segmented. Maxilla 2, inner plate with several inner marginal plumose setae. Maxilliped stout, palp segment 2 short.

Coxal plates, $1-4$ relatively broad, lower margins nearly straight; coxa 1 abrut as deep as 2 , weakly directed forward. Coxa 5 , anterior lobe acute below. Gnallopods 1 \& 2 stout, 2 larger, moderately sexually dimorphic; propods telatively large, deep; carpus deep, shorter than respective propod. Gnathopod 1, propod with single distal row of pectinate setae: posterodistal angle wilh 3 rows ($4-5$ in male) of stoul claspintes spines. Gnathopod 2, propod, postero-distal angle with 2 rows (3 in male) of stout spines.

Peraenpods 3 d 4 stout, margins spinose; segment 5 small, much shorter than segmerts 4 \& 6 ; dactyls short. Peraeopods 5-7, not markedly dissimilar; segrnent 5 much

FIG. 3. Atylus carinatus (Fabr.). Female (28.0 mm), Male (22.0 mm) Slidre Fiord, Ellesmere I.

FIG. 4. Atylus atlassovi (Gurjanova). Female br. III (20.0 mm) Constantine Harbor, Amchitka I. Male ((27.0 mm). St. Matthew I., Bering Sea.
shorter than segnents 4 或 6 ; peraeopod 5 , basis with weak lower hind cusp. Peraeopod 7, basis broad, lower hind lohe acute.

Ploon plates $1-3$ briod, hind corners acuminate. Uropod 3, rami large, broadly lancenlate, margins bluntly rounded and spinose apically (female); rami larger, naw-rowly lancedlate, inner margins setose and spinose.

Telson lobes, medium, fused basally, aamowing distally, apices neatly bare.

Coxal gills sac-tile, moderately pleated in males, on peraeon segments 2-7.

Distributional Fcology: Sea of Okhotsk (Kamchatka peninsula) to Bering Sea and Sea of Okhotsk, in subtidal shallows.

Taxonomic commentary* Arydus aldassoui is a distinctive but relatively primitive species. It clusters most closely withA. carmatus, at less than 75\% similarity level (p. 60).

Atyhas bruggeni (Gurjanoya)
(Fig. 5).
Nototropis bruggeni Gurjanowa, 1938: 325, figs. 36, 37.Gurianova, 1951: 680, fig. 475.
ADyHs bruggeni Mills, 1961 :(key only),-Barmard \& Karaanan, 1991: 263.

Material Examined:

BERING SEA: SL. Lawtence $\mathrm{I}_{4}, \mathrm{P}_{+}$Slattery Coll., July 10, 1980 - 1 thate I female, Ibid, Jume, 1987 - I male, 1 female (br. I), 10 im . Panuk I, gravel, 5 m . P. Slattery coll., June 6, 1983, 3 lots - Duale (14.5 mut) (slide mt.) Femate br, It (16.0 mm) (slide mut: $200+$ specimens including many males and some females ov.

St, Mathew L., Walrus Cove, P. Slattery, June 27/83-3 Iots (8 spms). Ibid, Big Bite Bay, June 15/86-male (15.0ntint (slide mit); fernale with young $(19,0 \mathrm{~mm})+40$ other specimens, including thature males, females with brook young.

Pribilof I., St Paul 1., D. B. Quayle coll. Noy. 21, 1965II specimens.
ALASKA MAINLAND; Onf Icy Cape. 2 ft, in depth, P. Slattery coll., June 24, 1984 - 4 specimens, Off Wainwright, June 22/84-11 specimens.
ALEUTIAN ISLANDS: Amchitka I., Constantine Harbor. C. E, O'Clait coll. April 26, 1969-1 male (22.0 mm) (5lide mount) Ibid, Sepl. 27, 1969. I male, 1 temale. CMN collections.

Diagnosis: Male ($15,0 \mathrm{~mm}$), temale (10.0 mm): Body large, strongly compressed.. Perheon and pleon with middorsal ridge, elevated to medium strong carina on peraeon seguents 6 菆 7 , and pleot segments $1-3$. Urosome segments 1 , and fused 2 \& 3 , each with bifid mid-dorsal carina.
posterior tooth much the stronger. Head: rostrum large (\gg 1/2 head length;: anterior head lohe shallow, excisot below eye. Eyes large, oval, latger in male. Antennae slender. Antenna 1 relatively short, peduncular segment 2 shonter than 1 (female), subequal (male), margins weakly setose (brush setae int mate), segment 3 short. accessory flagellum minute. Abtenna 2 , peduncular seginent 5 much longet than 4, thargins sparsely selose; segments 3 \& 4 with brush setae (male).

Lower lip lacking inner lobes. Mandible; molar strong; spine row with 5 blotes and accessory setae; left lacinie 4(5) dentate; palp slender, wealkly setcse. Maxilla I, inner plate with 8 apical setae; palp stout. Maxilla 2 , inmer plate with several inner inarginal pectinate setac. Maxilliped, palp slender, dactyl tong.

Coxae 1-4 medium, lowar margins various; coxa 3, anteriorly subacute below. Coxa 5, anterior lobe small subacute. Gnathopod 1 \& 2 slender, very slightly sexually dimorphic, somewhat dissimilar, 2 the larger, Gnathopod 1, propod and cappus small, shot; propod with antero-distal row of about $15-20$ pectinate setake and 3 clusters (2 in female) of longish spines at the postero-distal angle. Gnathopod 2, prophd and carpus more slender and longer; basis, margins lined with lornig setac.

Peraepoods 3 \& 4 medium strongr 8 egment 5 small, fituch shorter than egements 4 \& 6; dactyls short. Peraeopods 5-7 rather dissimilar in form; segment 5 shorter than segment 6 and much shorter than 4. Peracopods 5 \& 6. bases lacking postero-distal lobes. Peraeopod 7. basis broad, subacutely produced below.

Pleopods strong. Pleon plates I-3 broad, hind corners acuminate. Uropods I \& 2 strong, rami unequal, Uropod 3, rami lauceolate, margins sctose (male), spinose and very weakly setose (fentace).

Telson ondinary, lobes fused basally, noldiverging distally: apices eact with single small spint.

Coxal gills large, sac-like, simple (female); anterior gills moderately pleated (male)

Distributhonal-Ecology: Bering Sea to Sea of Japan, in depus of $10-80$ metres, mainly on sand. In North America, from St. Lawrence Island and the Pribilof Istands to the Aleutian chain and mainland Alaska, from the shore line to depths of more than 10 m .

Taxonomic eommentary: This species is distinguisbed by its large hody size and low bady carinations, except on the urosome where it is bicuspate on fused urosome segments 2 3. Amiong other dislituguishing features, the gnathopods and uropod 3 (esp. in the male) are very setose, and the mandibular palp is slender. This species evinocs plesiomorphic character states such as the weakly subchelate and long wristed gnathopots (both sextsi) and strongly rostrate head. It also possesses apomorphic features such as the weakly 5dentate mandibular lelt lacinta and weakly pleated coxal gills.

FIG. 5. Atylus bruggeni (Gurjanova), St. Matthew I., Bering Sea. Female ov (19.0 mm) Male (15.0 mm).

Atylus eknani (Gurjanova)

(Fig. 6)
Nototropis eknani Gurjanova, 1938; 323, fig. 35.Gurjanova, 1951: 685, fig. 473.-Tz4etkova. 1968: 172. Atyhs ekmand Mills, 1961: 19 (key) -Bamard \& Karaman, 1991: 264 (list).-OKado, 1993: 7.

Diagnosis. Female (20 mos): Eody large strongly compressed laterally, Peraeon and pleon with mid-dorsal ridge elevated to low carinac posteriorly on peraeonal segments (5) 6-7, and pleon stgments 1-2. Pleosome segment 3 and urnsome segment 1 , each with strong bilid mid-dorsal woth. Fused urosume segments $2 \& 3$ with single acute mid-dorsal carina. Head: rostrum arched, medium tollarge ($\sim 1 / 2$ head dength); anterior thead lobe narmow, angles rounded. Eyes small to medium, subovate. Anternae sferder, not elongate. Antenna 1, peduncular segtnent 2 shorter than 1 , weakly setose behind; segment 3 short; accessory flagellum ves. ligial. Antenna 2, peduncular'segments $4 \& 5$ weakly setose.

Lower lip not described (inner lobes probably lacking). Mandible: tholar strone: Spine now with 6-7 nartim blades and accessory setae; left lacinia $51 / 2$ dentate; right lacinia bifid, tips flabellate; palp slender, weakly setose. Maxilla 1 . inner plate with about 6 apical setae; palpstong. Maxilla 2, inner margin of inner plate with single stoul plumose seta. Maxilliped, plates large palp slender slightly shortened.

Coxal plates I 4 narrow, stallow, subacute below; coxa 5. anterior lobe small, sharply rounded. Gaathopods 1 \& 2 small, slender, unequal. litte or not sexually dimorphic. bases not strongly setose behind. Gnathopod 1, cappus medium depth, as longas propod; propod, innerface anteriorly With 5 -6irows of pectinate setae, distal 2 fows each with more than 20 setae. Gnathopod 2, carpus slender longer than propod.

Peraeopods 3 线 4 strong spinose; seyment 5 distinctly shorter than segments 4 \& 6; datyls medimm. Peracopods s-7 dissimilar, segment sthorter than segment 6 and very much shorter that elongate segment 4. Pertacopots 5 \& 6. bases with very smatl acute postero-distal lobes. Peraeopod 7 moderately broad. posien-distal lobe smalls, rounded below.

Pleopods undescribed. Plenn segments medium broad, hind comers mucronate. Uropods 1 \& 2 stout, rami unequal, margins spinose. Uropod 3, rami subequal, lanceolate. -2 X length of peduncle, margins spinose.

Telson Iobes long, narrow, fused in basal 1/4, apices not diverging, each with notch and sinall spine. Coxal gills not described.

Distribution: Western North Pacific: Russiar coast of he Japan Sea ath southen Hokkaido, month to the Okhosk and western coast of the Bering Sea at subtidal depths.

Taxonomic Commentary: Mills key lo species of Atylus includes A. ekmani erronevusly in the group with 2
dorsal teeth on urosome 5 最 6. This oversight. pointed out by Okada(1993), is corrected in the present key (p. 10). The species clusters most closely with P. bruggent and P. bevidenses ($p, 60$). Features in common include the very thin body, carinaled alodomen, weak gnathopods (propod ot gnathopod I with heavy pectinate setae), unevenly scalloped lower margins of the anterion coxal plates, and the short. spinose uropod rani in both sexes.

Atylus lewidensus]. L. Barnard

(Fig. 7)

Arydus levidencus J, L. Bathard 1956: 38, pls. 13, 14,Mills, 1961: 19, Jig. 1.—Barnard, 19691; 94.-Bannand, 1975: 340, 359, fig. 133.-Austin, 1985: 604.-Staude, 1987: 382 --Banard \& Karaman, 1991: 264.

Material Exannned (CMN collections. Ottawa):
S. E. ALASKA: Prince William Sound (Kayak I.) through onter coast (Sidea region), to southern Alexander Archipelago (Eronson Bay), ELB Stns, June-Aug., 1961 - 51 specimens in 8 lots, at: A3(1), A6(1), A22(11 - [including female be Ill (10.5 mm) (slide mt.), male (7.0 mm) (slide mt.) 17, A $75(7)$, A80(5), A112(1), A151(5), A175 (20). ELB Stns., Lisianski Strait to Sitka region, 1980 - 8 specimens ini 5 lots at: S4B3(1), S4B4(1), S8Bl(2), S11B2(1), S19B1(3). BRITISH COLUMBIA:
Queen Charlote Isfands: Graham lo, thoth, outer, and inner Coasts + Massel lulet, ELB Smas, July-Aug., 1957 - ~ 100 specimens in 13 lots (reported upon by Mills, 1961).
B. C. Mainland coast: Prince Rupert to Calvent Island, ELB Sms, July, 1964 - ~200 specimens in 15 lots, at: H1(19), $\mathrm{H} 5(3), \mathrm{H} 7(50), \mathrm{HS}(14), \mathrm{H} 12(16), \mathrm{H} 26(1), \mathrm{H} 33(1), \mathrm{H} 35(4)$, $\mathrm{H} 39(50), \mathrm{H} 449), \mathrm{H} 47(6), \mathrm{H} 49(3), \mathrm{H} 50(100, \mathrm{H} 53(3), \mathrm{H} 65$ (6).

North end Vancouver l., Cape Scotl to Wickaninnistu Bay, ELB Stns, July, 1959 - -30 specimens in 6 lots (reported upon by Mills, 1961).
South end Vancourer 1. , outer coast south to Victoria, surf coast locations, in Fxyfospadix corms; July, 1955-7 specimens in 4 tots (reported upon by Mills, 1961).
Barkley Sound south to Sonke, ELB Sins, 1964-77-80 specimensin 17 lots, at P P702(2), P719(5), P710(5), P711(1), P714(2); B3(32) [including female ov (10.5 mm) (slide mt.), male (8.5 mm) (slide mL.)], $\mathrm{B} 4(5), \mathrm{B5}(3) ; \mathrm{B} 8(1), \mathrm{B} 19(18)$, Straitof Georgia, English Bay, ELA coll. - 1 Femaleov (12,0 amin) (slide mu) 1 male (10.0 mm) (slide me.).
WASHINGTON, OREGON: ELB Stris. Stratil of Juan de Futa to Otter Rock, July-August, 1966-~250 specimens in 3 lots, al: W30 (2), W34(13), W36(62), W40(50), W42(6), WSS(65), W60(48).
Coos Bay, Oregon, to Mendocino Co, CA, KE Conlan Stris, July, $1986=-50$ specimens in 5 lots, incuding 1 female br. III (10.0 mm) (slide mal.): I mate (7.0 mm) (stide mt).

FIG. 6. Atplus ekmani Gurjanowa A. Female (20.0 mm). Japan Sea. (modified from Gurjanova, 1951) B. Female (20.0 mm) (modified from Okada. 1993).

Diagnosis. Fenate (12.0 mm); male ($7-8$ man): Body medium, strongly compressed laterally, Peraeon and pleon with mid-dorsal ridge, alevated to low catina on perateon segneat 6 \& 7 and pleon segments 1-3. Wrosome segments 1 , and lused segments $2 \& 3$, each with acule elevated dorsal tooth. Head; rostrom large ($-1 / 2$ head length): anterior head lobe shallow, slightly emarginate. Eye small, oyal, Antennae slender. Antermad peduncular segment 2 shonter than 1, not setose behind; accessory llagellum minute. Antenna 2. peduncular segments weakly setose.

Lower lip lacking inner lohes. Mandible: molar strong; spine row with $4-5$ blades and accessory setae; left lacinia $41 / 2$ - dentate; palp slender, weakly setose. Maxilta 1 , inner plate with 5 apical setae, palp strong. Maxilla 2, inner plate with single large inner marginal plumbe seta. Maxilliped, palp slender, inner plate relatively short.

Coxal plates 1-4 medium, titue overlappiny basally: coxa I not directed forward; coxa 3 anterionly acute helow. Coxa 5, anterior lobe narrowly acute below. Gnathopods 1 \& 2 not discernibly sexually dimorphice propod short, sinall, with distal row of anmerous peclinate selae; canpus slender. litule longer than propod.

Peracopods 3 \& 4 relatively short, segment 5 small, much shorter than segmens 40 6; dactyts short. Peraerpods 5.7 somewhat dissimilar in size and form; segment 5 mall, shorter than segment 6 and much shortes than segment 4 ; bases moderately expanded, Iower hind lobes wery small, not prorluced.

Pleopods relatively short, weak. Flleon plates 1-3 medium broad, hind cormers obtuse. Uropods I \& 2 rellatively short, outer ramus the shorter. Uropod 3 , rami ghort (-2 X pedancle), thick, matrgins spingese (byth seses).

Telson lobes narrow, slighty diverging distally, dpices with single stout spine. Coxal gills on peraeopods 2-7. medium large, weakly pleated in male.

Distributional Ecology. North American Pacific: From Prince William Sound (S.E. Alaska) southward through British Columbia to Central California (rate south of Monterrey) along oper, high salinity, suri-exposed, bedrock shores, frequently among coms of Phwllospadix, in the lower intertidal zone. It was not taken in dredge hauls and is theretore ranked as a truly hittoral zone species. It was also seldom collected in the summer-wanti, relatively brackish shallows of the Strait of Georgia.
A. lewdersut, and A, tidens, were the only two species of Afyus collected in modest abundance.

Taxonomic Commentary: The species shows little variation in body size or morptotogy throughout its range. but is endemic to cold-temperate waters of the North American Pacific coast. It clusters above the 75% similarity level wilf A, efmani of westem Pacific shores but only at the 65% level with A. briggent of the intervening Bering Sea region (Fig. 30, p. 60).

Atylus ryloni (Bulycheva)
 (Fig. 8)

Noromopis robi Bulycheva, 1952: 221, lig. 21. Arybus rylow Barnad k Karaman. 1991: 264. Ishimary, 1994: 42.

Diagnosis. Femate of (11.0 mm), Bondy medium, compressed. Peracon segments dorsally smooth. Pleon sezments 1.3 with low mid-dorsal ridge that becomes a weak carina posteriorly, Urosone 1 will posterior mid-dorsal carination and pre-ceding notch. Fused urowome seguterits 2 \& 3 with raised mid-dorsal tooth. Head: rost-rum anchied medium-larged (al/2 head lengdi); anterior head lobe notched medially. Eyes medium, renifonn. Antenna medium. Antemat 1, pedumbar segment 2 now longer than 1 but w 3 X seyment 3; accessory thagellum vestigial? Antenna 2. peduncular sement 4 \& 5 strong, moderately setose.

Lower lip lacking inner lobes. Mandible: molar strome; Spite row with 4.5 blades(?): lacinia not described; palp medium, apically setose. Maxilla 1 inner plate with 3 apical setac; palp broad. Maxilla 2 , innes plate, inner marginal setae not des-cribed (several?). Maxilliped ordinary, plates and palp strong.

Coxal phates 1-4 medium large, hind margins setose, lower marging gently convex. Coxa 5 , anterior lobe broadly ronaded below. Gnathopods 1 \& 2 medium stender, 2 the lager, margins of bases not strongly selose. Guathopod 1, carpus not elongate, slightly shoter than propod; distal pectirate setae of propod not described. Gnathopod 2, propod and carpus longex and more sfender than in gnathopod I.

Peraeopods 3 , 4. segment 5 small, much shofter that segments 4 政, 6, dactyls shori. Peracopods 5-7 not markedy differing in length; seyment 5 shorter whan 6 athd wuck shorter than segment 4 (especially in peraeopod 6); dactyls short, Permeopods 5 de 6 . hind Iolbes small, not produced below. Peraeopod 7 , hind lobe of basis sharply rounded be low.

Pleon plates 1-3 broad, hind comers obtuse. Uropods 1 \& 2 not clearly sfown or described. Uropod 3, rami short (2 X lengthof peduncle), broadiy lanceolate, margins spinose. Telson short (width $\$ / 4$ length) Iobes short, lused basally, apices narrowing abrupty, each with ! -2 shori spines. Cozal gills and brood plates not described.

Distributional Ecologyt Peccr-the-Great Bay, Russian coast of the Sea of Japan. in the tittoral zone. Ovigerous females in September.

Material of the species was not obtained at North American Pacific stations.

Taxonomic Commentary: Although originally as* signed to the genus Nototropis (Bulycheva, Loc, cis), rylowi is clearly referable to the genus Atybus in the form of sts antennae, peracopods, wropods and velson, Atylus ryiow clusters with the A. tridens group, including A. borealis.

FIG. 7. Atylus levidensus Barnard. English Bay, B. C. Female ov (12.0 mm) Male (10.0 mm)

F1G. 8. Atylus rytovi Bulycheva, 1952 . Female ov. (11.0 mm), Japan Sea. (moditied from Bulycheva, 1952)

Aylus tridens (Addeman)
(Fig. 9)
Novoropis ridens Aluerman, 1936: 58, figs 20-25,
Arydus tridens Mills, 1961: 25, fig. 3 (partim- non-pelagic stage).-Barnard, 1975, 346, 359, fig. 216.-Austin, 1985: 604.-Staude, 1987: 382, figs. 18.54, 18.63.-Barnard 点 Karaman, 1991: 263.

Material Examined (CMN collections, Ottawa):
SE ALASKA: None clearly separable from A. borealis in material taken at ELB Stns in 1961 or 1980.
BRITISH COLUMBLA: [Mills (196I) reponed on 1955-59 collnes).
Quaen Charlote Islands, mostly Graham I. ELB Stns, July* Aug., 1957 - 20 specimens in 6 lots, at: W2(1), W8(3) W9(9), WI1(5), WI2(1) EIT-I8(I).
B. C. Mainland, Prince Rupert of Rivers Inlel, EllB Suns, July, $1964-\sim 240$ spms. in II lots, at: $\mathrm{H} 1(3), \mathrm{H} 4(5), \mathrm{H} 7(15)$, $\mathrm{H} 23(-80), \mathrm{H} 41(-85), \mathrm{H} 48(1), \mathrm{H} 49(2), \mathrm{H} 50(27), \mathrm{H} 52(2)$, H57(-30), H61(1).
S. end Wancolver l. Wickanninish Bay and Barkley Sd. to Victoriat and Nanamo. ELB Stns. July-Aug., 1970-1977 --200 specimens in 10 lots, at: $P 703$ (1 male (1.5 min) slide mat $), P 713(1), P 716(-50), P 717(47), P 719(2) ; B 4(13), B 5(2)$, $\mathrm{B} 9(2) ; \mathrm{B}(31), \mathrm{B} \cdot 1 \mathrm{la}(\sim 50$ - incl. I male (11.0mm)(slide mut). Ifem, ov (10,0 min (slide me).
WASHINGTON, OREGON: Agate Beach, and Cape Flattery to Neskowin Beach, ELBB Stits, July-Aug., 1966 - - 400 specimens, mosdy immatures, in 17 lots at: W33 (-200), W34(54), W30(20), W39 (8), W40 (72), W42(11+), W46 (2), w50(1), w57 (24), W61 (5).

Diagnosis: Femate (10.0 mm), Male (9.0 mm) : Body small to mettum, not excep-lionally compressed. Peracon and pleon lacking dorsal carination. Urosorne segment 1 , and fused segments $2 \&$ 3, each with medium tooth preceded by notelr. Head: rostrum slender, mediun ($\leqslant 1 / 2$ head length); anterior head lobe broad, slighdy cmarginate. Eyes very large, brode, subreniform (bobli sexes). Antennae long, medium strong. Antenna 1, peduncular segmeni. 1 longer

FIG. 9. Atylus tridens (Alderman) Wickanninish Bay, B, C. Fem. (10.0 mm) Male (11.0 mm).
than segment 2 isubequal in male, with posterior marginal brush setae); segment 3 shari: accessory 鳰ellum inimute. Antenna 2, peduncular segments 4 \& 5 long. moderately setose, much longer and anned anteriorly with brush setae in male; flagellum (female) with aboul 20 segments, each with short posterior spine.

Lower lip with weak inner lobes. Mandible: motar sloong; spine row will 5 -6 large blades and accessory setae; left lacinia 5-dentate, right latinia bifid, lips flabellate; palp mediunu, distal segment scose. Maxilla 1, inmer plate with 5 apical setae, palp broad, strong. Maxilla 2, inner plate with single inner marginad plumose seta. Maxilliped ordinary-

Coxac $1-4$ browi, deep, bower margins variously convex: coxa 1 smallest, 4 largest and broadest. Coxa 5, anterior lobe small, subacute. Gnathopods 1 \& 2 not grossly differing in size but moderately sexually dimorphiw; bases lined posterionly with numerous Iong simple setae; propod and carpus slender, not elongate; propod of gnathopodl ammed antero-distally with 3-7 pectinate setae; postero-distal angle with $2-3$ groups of spines.

Peraeopods 3 \& 4 stout; segment 5 small, much shorter than segments 4 \& 6 (in male, all atmed postertorly with phomose "swanming setae") thacty/s shon. Perieopods 57 dissimilar in size and form; segment 5 small, much shonter than segments 4 \& 6. Peratopods 5 \& 6, basis moderately broadened, lower hind lobes small, unproduced. Peraeopord 7. hasis broad, hind lohe acute below. with notch.

Pleopodsstrong, peduncles large. Pleonplates I- 3 broad, bind comers acuminate. Uropods I \& 2 stout, rami unequal. Uropod 3, ramj strongly lanceolate, margins setose (mitle) spinose and weakly setose (female), apex with 3 stout setae.

Telson ordinary; lobes not diverginge apices with small spine; in male, lobes more elongate and apices each atmed with 3 strong setae. Cowal gills pleated, batally lohate (male)

Distributional Ecology: Queen Charlofle Islatids south along outer costs of British Collumbia (few inner) to Oregon and central Califormia, in high salinities (mostly above 290) in surf exposed situations, mainly in or above sand. Range extends south of A. boreahis, although the latter was not Laken S. of Juan de Fuca. Neither species was laken as fai north as Prince William Sound.

Taxonomic Commentary: The muterial examined by Mills (1961) has been re-examined and found to consist of two distinct species of which the large "pelagic stage" is the mature fonnof A borcalis. It tends wontur in deeper, colder, upwelling arcas, from Juan de Fuca noth to SE Alaska.

In mature male specimens, the proximal fladellar segments were each ammed poosteriorly with what appeared Lo be calyw-like protozoa, superlicially resembling calcooli.

Atyhds tridens is more abundant at southerly locations, and in summer warm, lrackish waters of the Strait of Gergia.

Atyius borealis, new species

(Fig. 10)
Atyius midenc Mills. 1961: 29 \& Table 2 (pelagic stage). Bamand \& Karaman, 1991: 265 (part)?

Material Examined (CMN collections, Ouawa):
SOUTHEASTERN ALASKA: ELB Stns.1961: Al6, MacArthur Bay, Kuia I. June 6-1 male (17 mur). 9 immei A59. Dixon Hhr, greenling stomach contents, June 19-1 subadult male: A 140 . Meleord Harbor. Monlague 1 . J June 13

- 4 mades 1 temale. 1 im.

Chichagof 1. to Kruzol I., ELB Stns, 1980\% $=-75$ gpecimens
 S11B3(25), S18日1(2), S19B1 (3-incl. 1 female (br, TIT) \}, BRITISH COLUMBIA:
Quan Charlotte [slands Graham In, ELB Stns, 1957: H14, Yakan Pt., Aug, 25 - Male (20.0 mm) Holotype, CMN Cat. No. NMCC 1994-0384; I female (13.0 mm) Allotype, CMN Cat. No. NMCC 1994-0385; many paratypes, mostly juveniles, trut including 4 males (to 17 mon), and 12 females, CMNCat. No. NMCC1994-0386; H13 (Skonum R. morth) $=1$ mate (subad): HFI $(1 / 2 \mathrm{~m}$. south of Old Masset). Aug. 27 - I male, I imm.

Mainland coast, ELB Sins, [964: H]0, Oval Bay, SW end, Juby 12, 1964-1 male, 5 females ov (slide mits.).
Vancouver Island, ELB Stn V4, Roller Bay, July 22, 1959 If female, 3 imm; P703, McKenzie Bench, July 7, 1970 - 1 male I temale (with young); Pachena Bay, P. Slattery coll., from whale pits, April 15, 1982 - 6 males, 10 rem, (ov, Br. [II), 8 imm; ELB Sin P708, July 17,1970-1 male.
[Note: Mills bisted to Following material from B. C.(pelagic fonm): Sua F6 (Telegraph Cove, Victoria) - 2 petagic males, 1 fenale of (18.0 mum) (side mt.); Sta. F8 (Garrison Bay, below - 8 jelagic males (among eel grass, as below); Sta. H14 (Yakan PL, QCl) - 5 males (as aboye)]. WASHINGTON: San Juan I. Sta F\&, Garison Bay, in eel grass, ELB collme, July 21, 1955 - 8 males ($14-20$ mm), I female (br, III) (slide mits.).

Diagnosis: Male (17.0 minn), Fentate ($13,0 \mathrm{~mm}$): Body large, notexceptionally compressed. Peraenn lacking dorsal ridge or carination. Pleon with very low posterior mid-dorsal rased tidge. Urosome segment 1 with strong carination preceded by noteh. Fused urosomie segments $2 \& 3$ with low mid-dorsal carina. Head: rostrum medium, detlexed distally ($\ll 1 / 2$ head lengith); anterior tiead lobe broad. upper angle deute. Eye medium (large in male). Antennae medium strong. Antenta 1, peduncular sement 2 shorter than 1 . weakly setose (bursh-setose posteriorly in male); segment 3 Very shon; acoessory llagellum minute, Antenna2 peduncular segnicnts 4 \& 5 margins moderately selose (segments 3 \& 4 anterionty brush satose in male).

Lower lip, inner lohes lacking. Mandible: molar strong; spine fow with 6 blades and accessory setae; tefil lacinia 5dentate; right lacinia bifidmabellatet palp medium, segment

FIG, 10. Atylus borealis, new species. Vakan Pt. Q. C. I., B. C. Male (20.0 mm) Fem. (13.0 mm)

3 distally strongly setose. Maxilla 2 , imer plate with 6 apical setac: palp madium. basal segment short. Maxilla 2, inner plate with single stout inner marginal plumose seta. Maxilliped ondinary, palp relatively shori.

Coxae 1-4 mediwn large, lower margins convex; coxal smallest, 4 largest. Coxa 5 deep. anterior lobe small, sharply rounded. Gnathopods $1 \& 2$ medium (nore powerful than in oriders), slightly sexually dimorphic; bases strongly setose postefiorly, Ginathopod 1, carpus slightly shorter thats propod: propod with antero-distal fan or 6-7 plumose setad and 3 clumps of slout spines at the postero-distal angle. Ginathopod 2 the larger; propod slighty longer that carpus. posteromdistal angle with 3 clusters of spines in mate, 2 clusters in fermale. Petacopods 3 \& 4 stout spinose; segment 5 small, much shorter than segments $4-6$; dactyls short. Peraeopods $5-7$ short, stout, dissimilar, segment 5 small, much shorter then segments 4 and 6 (especialy in peraeopod 6). Peraeopods 5 \& 6 bases moderately brodd, Hower hind lobes very small. Peraeopod 7 , basis broad. Iower hind lobe deep, sbarply rounded.

Pleopods powerful. Pleon plates I-3, hind comers achminate, slighty proluced. Uropheds 1 \& 2 sthut, rami unequal. Uropod 3, in fennale, rami broadly lanceolate, apices rounded, margins spinose and weakly setose; in male. rarni narrowly larcecolate, apices subacute, margins richly setose.

Telson lobes medium, nanowing and not diverging distally, apices subacute, lacking spine(s).

Coxal gills large, on perdeopods 2.7 , strongly pleated on $2-4$ (male). Brood plates broadly suap-like.

Distributional Enology: North-American endembe: southeasterm Alaska to the Strait of Juan de Fuca. A species of summer-cold, high salinity, subtidal habitats.

Taxonomic commentary: The species has been described previnusily, as a large form of A. tridens, by Mills (1961), based on a femade specimen taken at Telegraph Cove, Victoria, B. C. He summarized the differences between it and the crue Arylus tridens in his Table 2. Although the two species are closely related, A. borealis differs notonly in its larger size at maturity, but in its smaller eyes, more robust gnathopods and peraeopods, broader urgpod rami, and shorter, unamed telson lobes.

Variants: Specimens from whate piis in Pachena Bay cwere relatively small at maturity ($6-9 \mathrm{~mm}$) with short antennal flagellae, and sparesly setose and spinose.

Atylus collingi (Murjanova)

(Fig. IJ)
Nomtropis collingi Gurjanova, 1938: 328. fig. 38. Guranova, 1951: 638, Fig. 476.
Atydus collingi Mills, 1961: 23, (part)-Austin, 1985: (part).-Barnard \& Karanant, 1991: 263.

Material Examined (CMN collections, Ottawa): ALASKA: Bering Sea region. St. Lawrence I., SE Cape, P. Slattery coll. July $10,1980=$ miale (19.0 mm) (slide mt.), I male subadult, 1 femate br IJ, 117.0 mm)(slide mts); St. Paul $I_{\text {n }}$ June 25, 1983 - 18 specimens, incl. male (11.0 mm), Female ov (9.0 mm).
S.E. ALASKA: ELBSms 196I - - 190 specimens in 13 lots al. $\mathrm{A} 8(1), \mathrm{A} 12(1), \mathrm{A} 30(32), \mathrm{A} 33(5), \mathrm{A} 43(-85), \mathrm{A} 48(1)$,
 A140(-55),
BRITISH COLUMBIA:
Mainland Coast: ELB Sins, July, 1964: H13(11 - including mate (11.0 munt (slide mul), Female of $(8.5 \mathrm{~mm})$ (slide mit. $)$ H16(1), H17(21).

Diagnosis. Female br (II 1.17 .0 mm$)$, male (19.0 mm): Body large, strongly compressed. Peraem and pleon with middorsal ridge, elevated to low carina posteriorly on peracon seyments 6 \& 7 and pleon scements 1-3. Urosome segment I with strong mid-dorsal crest. Fused urosomie serments 1 \& 2 with mid-dorsal crest, and weak donsolateral ridges. Head: mostum medium, nearly straight (- I/ 3 bead length); ariterit heod lobe brad, slighty emarginate, upper angle subacute. Eyes small, lateral. Antennate relatively short, stout, flagella short. Antenna 1, peduncular segment 2 shorter than 1 (both sexes), posteriorly moderately setose (brush-setose in unale); segment 3 medium: flagellum 12 -segmented: accessory flagellum minule. Antenna 2. peduncular segments 4 \& 5 stout, surfaced with mumerous clusters of slont setae; posterior margin with short selae (both sexes): peduthoular segments 4 雾 5 stouter and more elongate in treale.

Lower lip. inner lobes very weak, not well delined. Mandible: molar strotig:, spine ross with 5-6 naryow blades and atcessory state; left lacinia 5-dentate, right lacinia bifud apises $3-5$ dentatc; palpe strong, semment 3 distally setose. Maxilla 1 , inmer plate with $6-7$ long apical setae; palp Stout, proximal segment shont. Maxilla 2, inner plate with 5 7 pectinate inner maryinal setae. Maxilliped thomal, inner plate relatively tall.

Coxae 1-4 large, decp, lower margins of $1-3$ convex, of 4 subacule, Coxa 5 deep, anterior lobe small, rounded. Guathopods 1 最 2 stout, subsimilar (2 larger), weakly sexually dimorphic, bases posteriorly strongly setose. Gnathopod I, carpus shor, hind lobe deep: propod with antere-distal group of $4-5$ pectivate setae, and $6-7$ rows of shor stout spines (5 rows in femade) at posterndistal angle; dactyls laasally thick. Gnathopor 2, propod and cappus slighty larger and more elongate than in gnathopod 1 .

Peraeopods 3 \& 4 stout, spinose, 4 slightly heavier than 3: segment 5 small, shonter than segment 6 and much shorter than 4 ; dactyls medium(> $1 / 2$ length segment 6). Peracopods $5=7$ dissimilar; , ce gment 5 small, shorter than segment Gand nuch shortep! dn segment 4. Perdeopests 5 \& 6 , bases moderately broadened, hind lobes moderate, not produced. Peraeopod 7, basis, postero-distal lobe rounded below.

FIG. 11. Atylus collingi (Gurjanova) St. Lawrence 1. Bering Sea. Male (19.0 mm). Femalebr, III (17.0 mm).

Pleopods stout. Peon plates $1-3$ broad hind corners acuminate. Uropod 1 stout, rami suhequal. Uropod 2, rathi relatively long, unequal. Lropod 3, rami short ($<2 \mathrm{X}$ peduncle), apices acule, marging weakly spinose.

Telson lobes shor (shorter in male), fused I/3 basally. converging distally, apices each with single slender spine

Coxal gills on peracopocls 2.7, weakly pleated anteriorly, smaller, simple posterionly, in males and females. Brood plates broadly strap-like.

Distribution: Japan Sea whe Chukchi Sea, in depilis of 3-10 morth American Pacifictegion: from the Bering Sea and Aleutian Islands south to the Stratit of Juan de Fuca and Puget Sound.

Taxonomic Commentary: The westem Pacilicmaterial ligured by Gujanova (1951) differs fromi North Anterican material in its somewhat smaller, mone acute coxal plates i. 4. deeper hind lobe or the basis or peracopod 7 , and inner plate of maxilla 2 that has only 3 apical setae.

AtyLus georgianus new species

(Fig. 12)
Alylus collingi Mills, 1961: 23, [1gs, 2, 4B A-Slaude, 1987: 382(part), -Barnardi \& Karaman, 1991: 263 (part).

Material Examined (CMN collections, OLuwa):
BRITISH COLUMBIA: ELB material (1955, 1957, 1959) from the Queen Charlote Islands and Vancouver I., reported unon by Mills (1961), has been re examined, and proves to consist entirely of this species.

Additional materiad. from S. Vancouver I inludes: ELE Sta. H43 (Witty's lagoon), July 28. 1964 - 17 imm. Satama 1., JFL Hart coll., Aug. 26, 1955 - femate ov (8.0 mm). Holotype (slide mt.), CMN Cat. No. NMCC1994-0397: male (7.5 mm), Allotype (shide mi.), CMN Cat. No. NMCC1994-0388; 10 other specimens, Paratypes CMN Cat. No. NMCC 1994-0389. Head of Departure Bay, JFL Hart coll., Aug. 25, 1938-2 males (8.0 mm), 1 femate br. III (9.0 mm).
WASHINGTON: North of Columbia estuary, ELB Stns, Juyy, 1966-6small specimens in 4 lots at: w26b(I). W33(2) W40(1), W46(2).

Diagnosis: Male ($7.5-3.0 \mathrm{~mm}$); female ($8-9 \mathrm{~mm}$): Body medium, laterally compressed. Peräeon and pleon with mid-dorsal ridge increasingty elevated to weak postefior carina on peraeon segments 6-7, and pleon segments 13. Urosome segment 1, and fused segments 2 \& 3, each with single elevated rounded tooth. Head: rostrum shorl, extending little beyond weakly acute anterior head lobe. Antennac medium, much as in A. collingi, but shorter and less setoge.

Lower lip, inner lobes small. Mandible: molar medium; spine row with $6-7$ slender blades and accessory setae; left
lacinia strongly 5-dentate; right lacinia simply bifid: palp slender, scyment 3 setose apically. Maxilla I_{4} inner plate with 5 apical setae; palp medium slender. Maxilla 2, inner plate with single inner marginal plumose seta. Maxilliped slender, bssal segment with long distal facial setae.

Coxae 1-4 large, deep, overlapping, rounded below. Coxa 5 deep, anterior tolbe small rounded. Gnathopods 1 id 2 medium (less strong than in A. collingi); slightly sexually dimorphic; bases serose posterionly. Gnathopod 1, carpus wery short, lobe deep; propod with antero-distal group of 35 pectinate setae, and 4 groups of slender spines at posterodistal angle. Gnathonod 2, propod and dactyl larger, heavier than in gnathopod 1.

Peracopods 3 \& 4 medius strong, margins spinose; segment 5 small much shorter than segments $4 \&$. 6 , dactyls medium. F'eraropods 5-7 medium, less spinose, dissimilatr' segment 5 much shorter than segments 4 \& 6. Peraeoporls 5 \& 6 , hind lobes of heis smatl or lacking. Pergeopor 7. Tasis, hind lobe rounded below.

Pleopods medium. Pleon phates I-3, hind comers squarish, notacuminate. Uropod 1, ramisubequal. Uropod 2 , rami unequal. Uropod 3 short, rami -2 X length of peduncte. margins spinose (both sexes).

Telson lobers shont, fused in basal 1/3, converging distally y_{7} apex of each with shender spine. Coxal gills sac-like, anterior gills pleated in male, simple in fetnale.

Etymologyt The trivial name georgionus alludes to the Strait of Georgia where the species is commonly encounlered.

Distribution: Endemic to the North American Pacific coast: Queen Charlotte Islands and central B. C., Strait of Georgia, Io Washington-Oregon coast, frequently in beds of eel grass, in sundy shallows.

Taxonomic Commentary: Atphageorgianus is closely related co A. colfmer Gurjanova but differs in mandibulat palp, anmature of plates of the maxillae, size of gnathopods. and shape of the uremmal carince. The subequal size of the mature male and femafe is distinctive.

Ablus occidentalis Hirayama

Arvherocidentalis Hirayama, 1986;4, 「igs, 1-4,- Ishimaru, 1994: 42.

Taxonomic Commentary. The original material was from Otsuchi Bay, Japtri. We tentatively accept the desifenation of this species by Hirayama and lshmara (oc, cit). 能 at member of the genus Atylus (sens, str) Regretably, however, we have seen no material of this species, and the literature is not available to us. The spectes is therefore not included to the regional key (p. IO) or anatysis of species relationships (p. 58-59).

FIG. 12. Atylus georgianus, new species. Saturna I., B, C. Fem. ov. (8.0 mm) Male (7.5 mm)

KEY TO GENERA OF NOTOTROPIINAE

1. Pigmented eyes well developed; anterior head lohe blunt or slightly marginate; peracopods 3 \& 4 , segment 4 small, much shorter than segments 4 \& 6 ; coxal plates $1-4$ large, aleep, strongly overlapping .. .

Nototropis (p. 28)
-Pigmented eyes lackinge anterior head lobe bifid; peracopods 3 \& 4, segment 4 slightly shonter that segments 4 \& 6: coxal plates I-4 small, shallow, basaily overlapping only Aberratydus (p. 30)

Nolotropilnae, new subtamily

(see Fig. 1(b))
Alylide (part) Stebbing, 1906: 329 -Barnard, 1969a: I61.Gurjanoval. 1951: 327.
Atylidae Lincoln. 1979: 438.
Dexaminidae (Dexamininae) (part) Bellan-Santini, 1982 : 212-Barnard \& Karaman, 1991: 260.

Type genus: Nototropir Cosla, 1853: 170 .

Genera: Aberrarylus, new genus (p. 30).
Diagnosis: Similar to Aryline ($\mathrm{p}, 8$) with the following differences: Body medium, occasionally large. Peraeon, posterior segments of ten not mid-dorsally toothed orcarinate. Pleon various, offensmooth above. Utosonte 1 usually with Irid-dorsal tooth and preceding shap notch, Rostrum short to medium. Eyes large (when present). Antennae slender; antenna 1 , peduncular segment 2 longer than 1.

Mouthpares basic. Lower lip. inner lobes variously developed, or lacking. Mandible, molar strongs, palp slethder, 2-3 segmented, weakly setose.

Coxal plates 1-4 large, lowermargins smoothor mounded. Gnathopods I \& 2 subsimilar, moderately to strongly subchelate (esp, in male), vatriously sexually dimorphic, of not.

Peraeopods 3 \& distinctly uncqual in size, peraeopod 4 the smaller, shorter in segments $2,5 \& 6$; segment 5 variable but typically small, much shonter than segments 4 A. 65 segments 2, 4, and 6 (male) often posteriorly amed with "swimming setae". Peraeopod 5, basis, posterior lobe usually produced below. Peracopords $5-T_{4}$ segment 5 not shoriened, 5 \& 6 subequad; segment 4 ofteri elongate.

Pleopors powerfully developed, stronger in the male. Pleon plates 1-3, hind comers mucronate. Uropod 3, rami long, lanceolate, margins variously setose (hoth sexes).

Telson, lobes ordinary, deeply sepurated, apices spinose.
Coxal gills 2-5 strongly phylloform or dendritic (especially in male), simple on peraeopods 6 \& 7. Brood plates medium to strap-like.

Taxonomix Commentary: The subtamily overlaps with subfanily Atylinate in a number of character states, but cath be distinguished reliably by the combination of character states illustrated in Fig. 1(b) (p. 6).

Nototropis Costa

(500 Fig. 13)

Nororopis Costa, 1853: 170.-Stebbing 1906; 329.Gurjanowa, $1951: 680$ (most).
Arpus Lincoln, 197t; 438 (pari),-Barnard, 1969: 163 (part),-Bellan-Santini, 1982: 212 (all)-Barnard \& Karaman, 1991: 262 (part).
Paratylas G, O, Sars, 1895: 462.
Type species: Nototropis gutatus Costa 1953 ($=$ Nototropis spinuficatda Costab.

Species: Nototropis brewitortwat Ledoyer; 1979; N comesGiles, $1888 ; N$, dentatus Schellenterg. $1931 ; ~ N$ falcotws (Metziger, 1871); N. granwlosus Walker, 1904; N. homochir (Haswell, 1885): N. massilernsis Bellan-Santini, 1975; N. megalops (Monre, 1984); N, melamops Oldevig, 1959; N. minikoi Walker, 1905; N, nordawaticus Boeck. 1871; N. reductus $K . H$. Barnard, 1930 ; N. serrofus Schellenberg. 1925; N. shmiti Gges 1866; N. swammerdamei MilneEdwards. $1830 ; N$.taupo J. L. Bannard. 1972; N. urocarinatus McKinhey, 1980; W, wodomenvis Bate \& Westwood, 1867 ; Nototropis sp. $(=$ N. gutams Irie, 1965)?

Diagnosts: Snall to medium (occasionallylarge) atylids. Rostrum short to medium. Eyes often very large, espechally in males. Peraeonal segments 5-7 and pleon segments 1 -3 dors-ally smooth, occasionally mucronate Jiosome 1 dorsally with carina and preceding notch; fused urosome segments 2 \& 3 , median dorsal carina variously developed or lacking. Antenna 1, peduncular segment 2 not shotter than segment 1; accessory Magellum minute or scale-like. Antenna 2, peduncular segments 4 \& 5 strong, weakly marginally setose.

Lower Lip, inner lobes various, occasionally lacking, Mandible, palp slender, (2)3-segmented. Maxilla 1 , inner plate wilh 3-8 apical selaé palp (1)2-scgmented; Maxilla 2, inner plate with stout inner marginal plumose seta. Maxilliped, palp nonmal, slender.

Coxal plates 1 - fregular,medium, lower margins rounded or staisht, not acule. Coxa 5 anterolobate, lobes rounded below. Gitathopods I \& 2 wariously sexually dimorphic: cappus and propord relatively shon, subequal in lengthit propod of gnathopod 1 with antero-distal clusters of pectinate setac.

Peraeopod 4 distinctly smaller or shorter than peracopod

FIG. 13. Nototropis guttatus Costa, 1853. Female ($9-11 \mathrm{~mm}$)
Mediterranean Sea. (modified from Bellan-Santini, 1982)

3: scgment 5 (in both) usually much shorter than segments 4 昆 6 ; in male, anterior and posterior margins of semments 4-6 and distal portion of segment 2 often lined with "swimming" setae.. Peracopods 5-7 not strongly dissimilar in size and torm; bases, hind lobes strong often acute below; segment 5 large, usually longer than segments 4 andor 6; dactyls medium.

Pleopods strong. Pleon side plates, hind comers acuminate, not produced. Uropod I rami subequal in length. Uropod 2, outer ramus the shorter. Uropod 3, rami strong, lanceolate, subequal, margins setose in male, spinulase and or setose in female. Telson regular, lobes medium. apices obliquely truncate.

Brood plates medium to broad, margins simple-selose. Anterior (peracopods 2-5) coxal gills strongly dendritic or phylliform, especially in the male.

Vartables; Rostrum large (N. smitu); anterior peraecinal
segments dorsally carinate (N. homochir); griathopod 2, propod and dactyl elorgate (N, toupo, N. smithi); peraeopod 7 , basis, postero-distal lobe weak or lacking (N. homochir, N. melanops. N. smitli; urosome weakJy or not carinate (N. megahops) telson lobes short (N, smitti). Further generic andor subgencric categories may yet be required to reflect the taxonomic significance of these variables.

Distributional Commentary: Component species of Notorropis are strongly tethyan in distribution, occurring mainly in tropical and wam temperate coastal waters of the Mediterrancan-Caribbean Atlantic and Indian oceans, witha few morphologically aherrant outliers in arctic and austrat regions. To date, one species, implausibly identified as the Mediterranean species N. gutratus Costa by Irie (1965) represents a questionable record of this genus and sublamily from Japanese waters. None was identified in present sludy material from the North American Pacific region.

F1G.14. Aberratyias aberrantis (J. L. Barnard). Female (4.8 mm) Male 6.1 mm) (Modified from Barnard, 1973)

Aberratylus, new genus
(sce Fig. 14)
Avyhas J. L. Baunard, 1962; 69 (pár.);
Lepechinella J. L. Barnard, 1973: 7 (part).—Barnard \& Karaman, 1991:261(part).

Type specles: Aryhas abervanzis J. I. Barnard, 1962: 69. figs 66. 67.-Barnard, 1964: 40, tig. 32. (=LepechinWha aberrantis J. L. Barnard 1973: 7. figs.).

Diagnowis: Rostrum medium. Peraeon segments 1-6 smooth dorsally. Pcracon segment 7 and pleon segments 1 3 posterodorsally mucronate. Urosome sezment I middorsally with twoteeth and intermediate notet;; fused wosome segment 2 \& 3 with prominent carina. Anterior thead lobe weakiy bifid. Pigmented eyes lacking. Antenna 1 , peduncular segment 2 slender, elongate; accessary flagellum 1-segmented. Antenna 2 peduncular segments slender, elongate, weakly setose.

Lower lip, imer lobespresent Mandible, palp weak. segment 3 short; axilla1, palp broad, 2 -segmented; inner
plate with 2 apical setae. Maxilla 2 , inter plate with single inner marginal plumose seta. Maxilliped, palp and plates nommal.

Coxal plates 1-4 small, basally contiguous or overlapping, tower margins entire, denticulate, not acute or processiferous. Coxa 5 anderolobate, anterior lobe various. Gnathopods 1 \& 2 subsimilar (2 targer), wery weakly sexually dimorphitie; tarpus and propod mediun, palms very oblique.

Peraeopods 3 \& 4 slender, but relatively short: segment 5 stightly shorter than segments 4 \& 6; dactyls medium. Peraeopods 5-7 dissimilar in size; bases litte broadened, lower hind lobes small, not acyte; segments 4 \& 5 subequal in length, both shorier than 6; dactyls medium ($=$ segnent 6)

Pleon plates 1-3 broad, hind comers mucronate. Uropods slender; uropal 1 , rami subequal; uropod 2 , outer ramus the shorter. Uropod 3., rami slender lanceolate, inner margins weakly setose.

Telson ordinary, lobes medium length. not diverging. apices with single spine.

Coxal gills not described (probably pleated). Brood plates not described.

FIG. 15. Lepechinella uchad J. L. Barnard Male (7.6 ram) Female (8.5 mm) (modified from Barnard, 1973)

> Lepechinellinae Schellenterg (revised status)
> (see Figs. I(c); 15)

Lepechinellidae: Schellenberg, 1926: 344,-Gurjanova, 1951: 674,-Barnard, 1969: 286.-Bousfield, 1982: 278. Dexaminidae (part): Barnard, 1973a: S.-Bellan-Santini, 1982: 212.-Bamard \& Karaman, 1991: 260.

Diagnosist Peraeon (varionsly) and pleon segenents mid-dorsally processifferous and/or densely covered with small setae and spines. Urosome I with single mid-dorsal process. Urosome 2\& 3 not carinate. Head, rostrum spiketike; antero-lateral head margin acutely bifid. Pigmented eyes lacking. Antennac long, slender (both sexes); antenna I the shorter; peluncularsegment 2 long:accessony flagellum present, 1-segmented.

Lower lip, inner lobes pell developed. Manditie, palp slender, reduced. Maxilla 1, palp 2 -scgmented, distal segment broadened. Maxilla 2, inner plate narrow. Maxilliped, outer plate large, inmer plate arched disto-medially: palp 4 -scemented.

Coxa plates 1-7 narrow, smath separated basally. Coxae I-4 incised or acute, often bilobate below; coxal distinctly
deepest; coxa 5 small, anterolobate. Gnathopods slender, weakly or not subchelate; carpus (especialiy in gnathopod 2) longer than propod.

Peracopods 3-7 slender, elongate. Peraeopods 4 slightly shorter than 3, mainly in basis; segmen 5 little (or not) shortened; dactyls elonyale (ollenssegment6). Peraeopods $5-7$ subsimilar in form and size; bases sublinear.

Pleopods slender, elongate. Uropods 1 \& 2 slender. Uropod 1, outer ramus enlarged. Uropod 2; outer ramus not shortened. Uropod 3, rami sublinear, rod-like, margins sparsely (or not) sctose, apices spinose.

Telson lobes short to miedium, lused basally by more than $1 / 3$; apices usually diverging, distally narrowing. Coxal gills pleated.

Genera: Leplechinetha (Lepechinella) Stebbing, 1908: 191: Paralepechinella Pirlot, 1933: 161; Lepechinellodes Thurston, 1980: 81; Lepechinellopsis Ledoyer, 1982: 365.

Taxonomic and Biogeographic Commentary: "Lepechinelta" aberrantis J. L. Barnard. 1964, is basically an atylid that exhibits a very few "lepechinellid" characters states (of head, perateoponds \& \& 4, and uropod 3). Accordingly, the species is here reassigned within family Atylidae

KEY TO GENERA AND SUBGENERA OF LEPECHINELLINAE

1. Mandibular palp segment 3 elongate, telson lobes not diverging. Paralepechinella -Mandihular palp segment 3 short or lacking. telson tolves diverging 2.

2. Cephalic projections lacking: mandibular palp L-segmented, Lepechinelloides
-Cephatic projections prominent; mandibular palp 3-segmented .
3. Outer ramus of uropends $1-3$ reduced Lepechinellopsis

- Outer ramus of uropods $1-3$ normal

Lepechinella
to subfamily Nototropinale wilf which it appers to have closest mophological affinities ($p .28$). A new gertus. Aberratyiks ($p, 30$) is here erected to accommonate its unique combination of character states.

The phyletic and artificial keys to Lepechinelia developed by Barnard (1973) suggest further intenal subgroupings that might muril lonnal subgeneric recognition. Thus, a group containiny Lepechinelda duca, L. tachi, L. cetrata, and L. thaco exhibits plesiomophaic (atylinid) character states including a lackof mid-darsal teethon threen more peraeonal segments, coxae 1-4 weakly processiferous below and peraeopod dactyls less markedly clongate than in other lepechinellid species grouph.

About 35 described species, in 4 genera, can beassigened 10 subfamily Lepechinellinae, all abyssal and bathypelapicepibenthic. At least two species are known from abyssal depths off Japan (Gamo, 1981). None was recorded from the Cascadia Abyssal Plain ofli he coast or Oregon by Dickinson and Carey (1978), at leasi not in significant numbers, and none was found in CMN amphipod material from other North American Pacific deep-water sites.

Subfamily Anatylinae Rulycheva (Reyised status) (Figs, I(d); 16)

Anatylidae Bulycheva, 1955: 205,
Dexaminitae (Anatylinae) Batnard, 1969a: 202.
Dexaminidae (part) Barnard \& Karaman, 1991: 260.
Type Genas: Anaryins Bulycheva 1955: morotypy,
Genera: Kamehatwhs Bannard, 1970b:93 (revised status).

Diagnosks: Small atylids ($3-6 \mathrm{~mm}$). Eody thin. Peracom segments 5-7 and pleon segments 1-3 variously carinate or smooth mid-dorsally. Rostrum weak. Anterior head lobe shallowly excavatc, Pigmentedeye snall. Antennae 1 \& 2 short; flagella short, 4-5 segmented. Antennal 1 , peduncular segments 1 \& 2 subequal; accessory flagellum vestigial. Antenna 2, peduncular segments weakly setose.

Lower lip, inner lobes very weak. Mandible: molar trending to reduction; left lacinia 4-dentate; palp lacking. Maxilla 1, inner plate with 2 apical setac; palp slender. Maxilla 2 ither plate slender. Maxilliped normal; palp
strong, 4-segmented.
Coxae $2-4$ relatively shallow, narow, lower margins mently excavate. Coxa I layering, subacule below. Coxa 5 shallow. Gnathopods I \& 2 slender, dissimilar in size; propod, palms very oblique. Gnathopod i. propod and carpus relatively shorl. Gnathopod 2 . carpus elongate.

Peracopods 4 distinctly shorter than 3. mainly in basis, and segment5 5 \& 6: segment 5 short. Peracopods 5-7 bases dissimilat, lower lohes very statl or lacking; segment 5 not shortend, longer that segment 6 .

Pleon plate $1-3$ deep, hind comers obtuse or rounded. Uropods $1 \& 2$, rami medium, unequal. Uropod 3 short, rami stout, margins spinuse.

Telson medium shott, lobes deeply separated, converging distady apices with single spine.

Coxal gills undescribed bus probably sat-like, unmodiFied, Brood plates undescribed, probably strap-like. Male undescribed.

Taxonomic and Distributional Commentary: Todate, the subfamily contains bul 5 deccribed species in two closely similar genera, of Indo-Pacilic and western Pacificaffinities, as detailed below. The present study restores the group to the subfamily status proposed initially by Bamand (1969a).

Amatylus Bulycheva

Anaryus Bulycheva 1955. 205, original designationBarnand, 1969a: 202 (in Dexaninidae)
Arylus (part) Barnadd \& Karaman, 1991: 262.
Type Species: Anatydus paviovski Bulycheva, 1955.
Diagnosis: Bordy medium, thin. Peraeon, Segmends 5.7 and pleon segments $1-3$ carinate along dorsal margin (cl. Abybs Jovidensus). Rostrum medium strong. Anterior head lobe shallowly excawate. Pigmented eye small, round, Antennae If 2 shon flagella $4-5$ segmented. Antenta 1. pedunculat segments 1 \& 2 subequal; accessory flagellum vestigial. Antenna 2, peduncular segment 5 longes

Lower lip, inner lobes presents, moderate. Mandible: palp lacking; molar reduced, weakly triturative. Maxilla 1_{r} inner plate fused to base of outer plate, with 2 apical selac; palp 2-segmented. Maxilla 2, imer plate small, lackitig Strong phumose inner marginal seta. Maxilliped nomal, palp

FIG. 16. Anatylus pavlovskii Bulycheva, 1955. Female (6-8 mm) Japan Sea (modified from Bulycheva, 1955)
strong. 4-segmented.
Coxae $2-4$ relatively shallow, nfurtow, slighty marginate below. Coxal tapering, subacute below, almost as deep as coxa 2. Coxas broadly antero-lobate. Gnathopods 1 \& 2 slender, dissimilar in size (2 larger), carpus longer that propod, palms very oblique. Gnathopod 1, propod and dactyl relatively short. Ginathepd 2, propod and dactyl relatively long, slender.

Peraeopods 3 \& 4 , segment 5 shontened. Peracopods $5-$ 7 slightly dissimilat, segment 5 not described. Peraeopod 7 . basis lacking distinct pustero-distall process.

Pleopods not described, (not powerful?). Pleon plate 3 deep, rounded below. Uropods 1 \& 2 not described.

Uropod 3 shorl, rathi heavy, lanceolate, margins sparsely spinose(female). Telson medium short, lober deeply separated, converging distally, apices each with single spine.

Coxal gills and brood plates undescribed.

Anatylus pavlowskii Bulycheva

(Fig. 16)
Anathas pavlovskii Bulycheva, 1955: 206, Fig. 6.-Bulycheva, 1957: 104,-Tawetkowa, 1967: 173.
Atylus paviovski Barnard \& Kataman, 1991: 262, fig. 50A
Diagnosis: With the characters of the genus
Distributiont The monotypic species A. pavovskii is known only from the Russian portipnof the Japan Sea (Peter-the-Great Bay), in modium depths (Bulycheva, 1955).

Tunonomic Commentary \ddagger As figured and described by Bulycheva (1955) and refigured by Barnard \& Karaman (1991), this species bears a combination of character states
that are remarkably similat to those of Kameharybur, originally diagnosed as a subgenus of Atydur based on the Hawaiian species K. nami (below). Regretably, Bulycheva did not fully describe or ligute the diagnostie character states of peraeopods 3-7. Until further material can be studied, the diagnostic subfamily character states are assumed to be similar to those of Kemathus japonicus which oceurs at other locatities in the Sea of Japan. The wo genera apear closely similar in described character states, although the lype of Kameharius is based on a species with all thee urosomites fused. Whatever future studies reveal in this regard, the name Anaylas Bulycheva 1955 would he a senior synonyth and is therefote retained here as a walid full genus.

Kamehatylus J. L. Barnard, revised status (see Figs, 1(d); [7A,B)

Arylus (Kameharyfus) J. L. Barnard, 1970b: 93.-Ledoyer. 19796: 157.-Barnard \& Karaman, 1991: 262.

Typespeciest Ayplus (Kamehatyiny man J. L. Barnard. 1970b: 93, figs $48,49$.

Specjes: Kamehatylus japomcus (Nagata, 1961); $\mathcal{K}_{\text {r }}$ processicer (Siwiprakasam, 1970); K. tulearensis (Ledoyer. 1984)?

Diagnosis: Smalla morphologically modifed atyinds. Rostrum shork. Eyes sinall. Peraton and plem dorsatly weakly carinate or rearly smooth. Urosome segments 1 , and fused 2-3 dorsally toothed; all three urosome segments fused in the type species. Antennae shorl, slender, Hagella fewsegmented: accessory flagellum tacking. Antenna 1, pedumcle 1 with posterodistal tooth or process. Antenoa 2, peduncular segments 4 \& 5 , marging nutarly smooth.

Lower lip lacking inner lobes. Mandible palp absent: molar process medium; spine row with $2-3$ blades and accessory setae; left lacinia 4-dentale, right lacinia bifidflabellate. Maxilla 1 , inner plate with $2-3$ apical selae; outer plate with 10 apical spines; palp slender, 2 -segmented. Maxilla 2, inter plate, inner margin subapically with single large phumose seta. Maxilliped, palp slender, shortened.

Coxae 1-4 short, shallow, lower margins rounded or slighly incised. Coxa 1 subacute below. Coxa 5, anterior lote small. Gnathopods 1 \& 2 slender, dissimilar, probably litte or not sexually dimonphic. Gnathopod I , propod shorter than carpus, with antero-distal median Facial clusters of pectinate setae, Gnathopod 2 , carpus slender, longer than in gnathopod 1.

Peraeopod 4 distinctly smaller in size than peraeopod 3: segment 5 (of hoth) small, much shorter than segments 4 \& 6; dactyls short. Peraeopods 5-7 subsimilar in size, bases not broady expanded, lower hind lobes small or tacking: segment 5 not shortened, longer that segment 6, but not markedly longer than segment 4; dactyls shori.

Pleon plates $1-3$ regular hind comers mucronate. Pleopmis not descrithed, Uropods 1 de 2 slemder. rami uth* equal. Uropod 3 rami short, subequad, mateins spinose.

Telmon lobes deeply separated, diverging distally, apices singly spinose, outer margins bare. Coxal gills sac-like, simple. Brood plates strap-like, not broad.

Mature male (Ledoyer, 1979b); Eye slighty larger, antemal flagella longer, than in temale.

Taxonomical and Distributional Commentary. The few described spectes of this genus are essentially IndoPacific in distribution, northwards in the Pacific to southern Japan, but not yet recorded from the North American Pacific codst. The species appear mopbologically speciadized for a cryplic life style on coral reefs in association with larese sessile invertebrates such as sea Lilies (Siviprakasim, 1970).

Konehatylus japonicus (Nagata)

(Fig. 17A)
Arwhe Japontcus Nagata. 1961: 216, figs. 1, 2.-Nagata, 1965a: 202. fig. 19.-Barnaud \& Karaman, $1991: 263$. nionAtydas(Kamehardas) (qponicus-Ledoyer, 1979b; 156 fig. 7(I).

Taxomomic Commentary: The species has been well described and figured by Nagata 1961-1965, loc, ctit) whose figgures are parly reprotuced here (Fig. 17A). Naytats species contontus closely will the subgeneric diagnosis of Barmot (1970 b) that was based on the Hawailam species, K. mani. However, in the Japanese species, the posterior peraeon and pleon are more strongly carimated, uroshine segmexth 1 is not fuscd with segments $2 \& 3$, and the gnathopods are more slender. Despite these andother minor differences. the authors consider Nagata's material from Japan congeneric with that of Barnard, and have broadened the generic diagnosis to accommodate both species.

Ledoyer (1979b, loccil)describeda very similar species from the Moluccas Islands, Indian Ocean, to which he had perceptively assigned the name Abylus (Kamehatlus) japonicus Nadata, Ledoyer's figures, reptotuced here (Fig. 17B), do show remarkable similarities to those of Nagata, including the relatively small eye and excavate anterior head lobe, the postero-distal process of peduncular segment 1 of antenta 1 , and the untused wosome segment 1 . However, on close inspection, his Molaccas material is seen to differ in a numberof specificteatwes suchasits weakerbody carination, shorter carpus of gnathopod 2, and more acute apices of the rani of uropod 3. Eedoyer's material is therefore regarded here as a species different from A. japonicus Nagata, and awaits formal designation as a possible new taxon.

Distributional Commentary. Komeharyur japoricus has been recorded from Japanese waters mainly froms Honshu and more southerly localities (see sumnary of pertimment Tideralure by Ishmarn, 1994).

FIG. 17. Kamehatylux japonicus.
A. K. japonicus Nagata Female (3.5 mm) Seto Intand Sea (Prom Nagata, 1960)
B. K. japonicus Ledoyer Male (3.4 mm) Moluccas Ids. (from Ledoyer, 1979),

DEXAMINIDAE Leach

Dexaminidac Leach 1813/14: 432.-Stebving, 1888: 573. -Gurganova, 1951:788.-Lincoln, 1979:448,-Bousfield, 1982; 212.
Dexaminidae (part) Bamard 1969: 200.-Bamand 1970: 163.-Bellari-Santini, 1982: 277.-Bamatd Karaman. 1991: 260.

Subfamilies: Dexamininae Leach; Dexaninoculinac, new subfamily; Polycherinate, new subtamily: Prophliantinae Nicholls.

Diagnosis: Body small, stout compact, not compressed. Sexual dimorphism expresed in eyes, antenna, uropod 3 : typically in gnathopod 1, pleopods, and telson. Peraeon seyments 5-7 usuadly smoth above, occasionally with middorsal teeth andor dorso-iaterall muctonations. Fleosome and urosome, less often posterior peraeord, amed dorsally and occasionally dorso-laterally with teeth or spines. Rostrum short!. Anterior head margin rounded or acute; may be produced strongly as ocular lobe. Eyes medium to large. Antennae short (female), Antenna 2 often reduced. thot longer than 1. Antenna 1, peduncular segment 2 various; acessary flagellum minute or lacking.

Lower lip, inner lober usually strong. Mandible, molar usually strong, triturating; spine row weak; left lacinia often 4-dentate; palplacking. Maxilla I, palp I-segmented (rarely 2); outer plate with 7-11 apical spines; inner plate wilh 0-2 apical setae. Maxilla 2, plates variously reduced, often
weakly setose. Maxilliped, inner plate reduced, with apical setate only: outer plate large broad; palp variously shortened, dactyl reduced or lacking (3-segmented).

Coxae $1-4$ deep, shottest anteriorly, litule (or not) indented below. Coxa 5 , broad, ofen deep. Gnathopods, unequat, subchelate (rarely chelate); gnathopod It the smaller. with short carpus, propod (male) strikingly notched or excavate anteriorly. Gnathopod 2 , carpus usally longer than propid.

Peraeopods 3 \& 4 subequal, various, segments 5 \& 6 trending to reduction in length, and subchelation. Peracopods 5-7 subequal in tength; basce typically unequally expanded. trending to livearity; segment 5 normal, occasionally shortened, segmenl 6 \& dactyl often shortened.

Pleopods shot to medium. Pleon plates 1-3. hind comers acuminate, oflen produced. Uropod l_{+}rami subequal, tips spinose. Uropod 2 much shorter than 1 , outer ramus the shorter. Uropod 3, rami lancoolate (olten broadly), margins variously plumose-setose, especially in unale.

Telson deeply bilobate, lobes not diverging apices subtruncate, variously armed.

Coxal gills on paracopods $2-7(6)$, variously pleated, not phylliform.

Taxonomic Commentary: As noted previously, Barnard (1970a. loc. cit) combined a number of dexaminoidean families (including Atylidae, Anatylidae, Lepechinellidae, Prophliantidde) within fannily Dexaminidae. His decision was based on the presence of one or more species deemed intermediate in form (often on single character states only)

KEY TO SUlBFAMILIES OF DEXAMINIDAE

1. Peracopods fundamentally simple, not subchelifonm; budy (esp. pleosome) variously carinated or processiferous:
2.

-Peraeopods variously sulbhelibintin; twdy (except urosome) smooth Polycheriluae (p. 37)
2. Eyes enommous, located at end of interantemal lohe; coxa 3 short; antemna 2 very short in female

Dexaminoculinae (p. 49)
-Eyes nomal, not at tip of interantennal lober coxa 3 normal, deep: antenna 2 litule shorter than antenna 1 (Temale) . 3.
3. Body carinated on urosome; peraeopod 7, segments 4 部 5 broadened, strongly setose; gnathopod 1 propht not sexually dimorphic. Prophliantinae (p. 51)

I
-Body carienated on pleon and urosome; peracopod 7 , segments 4 \& 5 not broadned or heavily setose gnathopod 1, proporl typcially scxuatly dimorphic

Dexaminimae (p. 36)
between the families in question. As noted elsewhere, this philosophy of cax onomic fusion does not recognize the Darwinian evolutionary thesis that predicts "intermediate" morphotypes existing, at one time or other, between all extant and past organisms. Thus, we agree with Ishimaru (1993) that the presence of single taxa that appear to "bridge" otherwise mophologically discontinuous higher laxa does not, alone, constitute a walid basis for merging of the pertinent higher taxa. The Barnardian classification is therefore fool followed here.

In this study, numerical taxonomicanalysis (p, 56) strong/y suppots recognition of just two family-leveldexaminoidean sutgroups, the Alylidae ($p .8$) and the Dexaminidae (above). The analysis further supports recognition of tour distinct subfarnily groupings within family Dexaminidae, as listed and keyed above.

Sublamily Dexamininae (revised)
(see Fig. 2(a))
Dexamininae (part): Bamard \& Karaman 1991: 260.
Dexamininae Ishimana, 1987: 1412,
Type genus: Dexamine Leach, $1813 / 14$.
Genera: Dexamine Leach. 1814: 432; Dexaminella, Schellenberg, 1928: 654; Paradexamine, Stebbing, 1899: 210; Sebadexilas Ledoyer, 1984: 56; Syndeapmine Chilton. 1914: 332.

Diagnosis: Body generally tonthed or processiferous above, not strongly compressed. Rostram mediums. Eye normal. Antennae regular.

Mouthparts typical of family; Lower lip, inner lobes variously developed. Mandible, spine row weak. Maxilld l,
oter plate with 10 - t1 apical spines. Maxillipxd, outer plate large: inner plate distinct; palp wafiously raduced, segments 384 shortened or vestigial.

Coxae 1-4 regular, deep. I smallest, Coxa 5 medium, Gnathopods typically subchelate, occasionally chelate: carpus not elongate. Gnathopod I, propod sexually dimorphic.

Perneopods nornat, not suhcheliformion mongate; segment 5 not unusually lengthened or shortened; dactyls medium; peraeopods 5-7 subequal in length, bases dissimilar in forn, vaiously broadened; segment 5 nomal.

Pleon segments dorsally and dorso-taterally carinate. Ploon plates 2-3, hind comers varionsly acuminate or produced.

Telson clongate, lobes deeply separated, not diverging.
Brocd plates sublinear.
Taxonomic and Biogeographic Commentary: As here defined, the subfamily Dexamininac encontpasses five genera and about 60 species that occur mainly in southem oceans. Paradexamine, with more than 40 described species, is assentially Inda-Pacific, with outliers extending to the Mediterratiean, South America, and Japan. The Japanese fauna comprises - 8 described species (Ishimaru, 1994), all confined to $\mathrm{K} y \mathrm{u}$ hu and the southern archipclagos; none reaches northem Honshu, and no member of the genus reaches the Pacific coast of North America. Sebadexins is monotypic in New Caledonia. Syndexamine contains 6 species, in lithral waters of New Zealand and southerti Australia. Dexamirnella, containing 3 species, is confined to the northwestern Indian Ocean and Red Sea. However, Dexamine, with only 3 recognized species (Barnand \& Karaman, 1991) is confined to the boreal and temperate Nonth Allantic region, extending mouthward along castern shores the the Mediterranean and Senegal, and along westers shores to the Middle Allantic States and Chesapcake Bay. Members of this subfamily have yer to be recorded authentically from the North American Pacific region and ane mot treated further in this sludy.

KEY TO WORLD GENERA OF DEXAMININAE

I. Gnathogods cheliform; maxilliped patp various, usually small to vestigial . . . Sebadexins Ledoyer.
-Gnathopods subchelifonti, inaxilliped palp 3-4 segmented 2.
2. Pleon segments distincly earinate mid-dorsally andor dorso-faterally, integument nomal 3.
-Pleon segments indistinctly or not carinated; integument often thick, heavy 5.
3. Pleon segments I-3 corinate laterally and dorsally Paradexamine Stebling
-Pleon sedments carinated dorsally only 4.
4. Maxilliped palp 3-scomented Dexaminella Schellenbery
-Maxilliped patp 4-segmented. Dexamine Leach
5. Uropods 1 . 2 2, inner rami reduced: peraeopod 6 massive Delloryle J. L. Bamard
-Uropods 1 \& 2 nonnali pertepophls s-7 subequal, 6 not massive Synderamine J. L. Bamard

POLYCHERIINAE, new subfanily

(See Fig. 2(c))
Dexaminidae (part) Stebbing, 1906: 514,-Barnard, 1969 : 200.-Lincoln, 1974; 448.-Bellan-Santini. 1982: 212.Barnard \& Karaman, 1991: 260.

Type Genus: Popycheria Haswell, 1879: 345.
Generic Content: Trisaefs Boeck, 1876: 317,

Diagnosis: Body smooth carinate (weakly) only an urosome. Head: rosirum wery weak or absent. Anterior bead lobe variously rounded. Eyes pigmented, large. Antentae I \& 2 medium, subequal, flagella usually setose. Antenna 2, peduncular segment 4 longer than 5. Accessory flagellum lacking.

Upper lip, epistome weakly produced anteriorly. Mandibular molar, left and right sides unequal. Maxilla 1 , guter plate with 7.9 apical spines, Maxilliped patp 3- or weakly 4-segmented. Coxa 1-7 shallow, variously bifid or acute below. Gnathopods slender, dissimilar in length; weakly subchelate.

Peraeopods 3-7 delicately prehensile (subchelate, or pseudo-carpochelate); segment 4 ellongatc; segments 6 and/ or 5 shortened. Peraeopods $5-7$ subsimilar, bases sublinear. segment 7 and dactyl often teversed.

Pleopods medium, peduncle and rami not powertul. Fleon plates 1-3, hind cormers mucronate. Uropod II, rami subequal. Uropod 2 short, rami uncqual. Uropod 3 , rami lanceolate, marisins setose (male). Telson lobes elongate, deeply separated, marginally spinose.

Coxal gills weakly pleated, on peracopods 2-7, Brool plates sublincar, strap-like.

Species of both Tritata and Polycheria are commensal mainly on sponges and colonial tunicates (Vades, 1969), clinging upside down in small pits excavated in surface cest of hoss, and feoding in the fashion of ampeliscoideans.

Taxonomic and Distributional Commentary: The subfamily presenty contains two genera, Polycheria and Trimefa, not wery closely related ($p .57$), characterized by a trend to prehensility (subchelation) of peraeopods 3-7. The peracopods of Tritata are carpochelate (fig. 28). About 20 species of Polycheria ane known, most from tropical and Warn temperate Indo-Pacific regions. Three species were previously described firm temperate waters of the Aslatic Pacific coast (Bulycheva. 1952; Hirayama, 1984) and one trom the Pacific coast of North America (Calmann, 1898: Barnard, 1969b). Triadeta contains only two species (many synonymies), both in the northeastern Adantic and Mediterranean regions (Lincolfh, 1979; Betlan-Santini, 1982).

The phyletic relationships of sublamily Polycherinade are with the Dexamininae (p. 36; Fig. 2(a)). Thus, males of the more primitive genus Tritaeta retain the distinctive dexaminid dorsally notched form of the propod of gnathopod 1 .

Pulycheria Haswell

Potycheria Haswell, 1879:345. -Stebbing, 1906:519.Holman \& Watling, 1993: 221.-Thurston, 1974: 18.Barnard \& Karaman. 1991: 271.

Type Species. Potycheria thuipes Haswell 1879.

Species (North Pacific region). Polycheria osborni Calman 1898; P. carinata, new species (p. 42); P. mixillae, now species (p. 44); P. ambalusaensis Hirayama, 1984a: P. orientalis Hirayama 1984a; P. japonicus Bulycheva, 1952.

KEY TOGENERA OF SUBPAMILY POLYCHERIINAE

1. Perteopods 3-7 pseudo-carpochelate (carpus expanding and strongly spinose distally, propod lacking palm); antentid Magella smooth; gnathopod 1, propod markedly sexually dimorphic Tritaeta.
-Peracopods 3-7 distincty subchelate (propod with distal palm, carpus nob expanding distatly) anteninal flagella strongly setose: gnathopod 1, mopod mot markeilly sexually dimorphic. . . Pobycheria ($\mathrm{p}, 37$).

Dagnosis: Body slout, broadest at peraeon segments 4 \& St mid-dorsally carinated on urowome segment I; paired dorso-lateral ridges or smatl spines usually present on fused urosome segments 2 \& 3. Head: rostrum wery weak: anterion head lobe variously rounded; eyes large, sexually dimorphic. Antenna 1, flagella usually strongly setose.

Lower lip, inner lobes well developed. Mandible, deti and right molars dissimilar in size. Maxilla 1, outer plate with 7-9 apical spines. Maxilla 2_{1} apical setae weak. Maxilliped, palp 4-segmented.

Gnathopods very weakly subchelate. Gnathopont $]_{5}$ propod not strikingly sexually dimorphic; palmar margin short to obsolescent.

Peraeopods 3-7 delicately subrehelate; dacty 1 short, closing on short fixed finger: segment 5 short, not expanded or strongly spinose distally, variously shorted or longer than segment 6. Peraeopods 5-7, hases sublinear (may be slightly browdened in peraeopods $5 \& 6$).

Uropord 2. outer ramus usually the shorter. Uropul 3 (female), rami variously unequal.

Telson lobes variously lused basally, margins spinose.
Sexual dimorphismstrongly expressed in eyes, antennae. pleopods, and uropod 3.

Taxonomic and Distributional Commentary: North American Pacific species difter from Asiatic Pacilic species in several character states, mostly apomorphically (pp.61-62 and key below). Both groups differ firhun the generally more prinitive species of the southem hemisphere as exemplified by the P. antarctica complex of species (Holman \& Wathing, loc, cit). Species of lhe North American study region are characterized by, maxilla 1, outer plate with 7 (vs, 9) apical spines, maxilliped palpshot(vs. medium); coxal acute(vs. rounded) below; gnathopod palmar margins distinct (vs. obsolete): peraeopods 3-7. segment 5 shorter (vs longer) than segment 6 ; uropod 2, inner ramus (vs, outer ramus) the shorter; uropod 3 (female), rami subequal (vs. unequal); and telson lobes more strongly fused basally. These differences point to the need for an extensive revision of the genus, based on re-examination of species world-wide, that is beyond the scope of the present study

Polycheria asborni Calman
(Figs. 18, 19, 20)
Polycheria asbomi Calman, 1898: 260, pl. 32, fig 2.\$kogsherg \& Vansell, 1928; 268, figs. 1-26-Barnard, 1975: 363, key + fig. 55.-Barnard, 1969a: 103.-Barnaxd,

19696: 200, fig. 25 g .-Stuude, 1987 : $382+\mathrm{key}$--Barnard, 19790: 38.-Barnard \& Karaman. 1991; 272 (iss), Potycheria antarctica (Stebbing. 1875): Stebting, 1900 : 520 (part)-Ahernan, 1936: 63.-Barnard, 1954a: 21 .

Material Examined (CMN collections, Otuawa): SE ALASKA: Stitka region. Slocum Pt. ELB Str S4B4, under boflders, July 27, 1980-1 「emale ov (slide mt). ERITISH COLUMBlA:
Queen Charlote Islands: none taken at outer coast sites, North Central coast: Oyal Bay, surf shore at LW. ELB Sin H10, July 12, 1964 - I fermale br. II (slide mi.), 2 other females.
S. end Vancouver I: Ueluelet, outer coash, J. Macoun colls, July, 1909. (ifentiffed initially as P. tenuipes Haswell) - 1 lot dried specimens.
Barkley Sd, region, ELE Sins, 1975-76:
Taylor I., Trevor Ch, annel, ELB Stn. P5bc. on ascidtans and sponges, LW, July 25, 1975-1 female br $11(4.5 \mathrm{~mm})$ (slide $\mathrm{mt})$; 1 femate oy $(5.2 \mathrm{~mm})$ (slide mit.) 2 female ov. (4.5. 4.8 mmi) (slide mes.); I male many specimens.

Kirty Pt., Diana 1., ELB Stn, P17d, on sponges and ytunicates from rocky walls of surge channels, LW and subtidal, Aug. 6. 1975-1 female ov, (5.8 mm) (slide mt-fig'd specimen); I male (3.7 mm) (slide mL. - lig'd specimen), 2 subad. males ($4,3,4.5 \mathrm{mtm}$): 1 subad. female (4.2 mm) (slide int.) several other specimens.
Borderais Islets, mouth of Trevor Ch... ELB Sth. P20c, from sponges and tunicates on rocky walls of surge channels, Aug. $9+1975-1$ female ov . $(6.0 \mathrm{~mm})(\mathrm{slide} \text { nt. })^{2}$ subad. males $(5.0$ mu, 3.8 mmi)
Edward King L.,Taylor J ELB B Stn B28a, under boulders at LW, July 10,1976 - I femade ov. (5.0 mm) (slide mu.); 1 Female br. II (5.3 mm) (slide mt.); several other specimens, mostly subad. females.
WASHINGTON-OREGON: No specimens were found in toollections from apparently suitable habitats at localities along the outer coast (see Bousfield \& Jarrett, 1981).

Diagnosis. Female ov. (5.8 mm): Urosome 1 , middorsal carina low, weakly toothed behind. Eye mediam. covering anterior half of head, golden brown in colour in fresh material. Anterior head lobe broadly rounded. Antenal 1 , segment 3 shori; Magellum $20+$ segmented, moderately sctose. Antenna 2, flagellum 18 -segmented.

Mandible, spine row with $2-3$ shor blades. Maxilla I, inner plate with $1-2$ apical setae; outes plate with 7 stender apical spines: palp shorl. Maxilla 2, plates small weakly

FIG. 18. Polycheria osborni Calman. Kirby Pt, Diana I., Barkley Sound. Female ov (5.8 mm)
plumose-setose. Maxillipet, outer plate with 12 inner marginal spines' palp shorter, dactyl thick.

Coxa 1 sharply acute anteriorly; coxa 3, anterior process elongate, length $>3 \mathrm{X}$ basal width. Gnathopod 1 , carpus and propod subequal in length, carpus proximally deepest; dactyl sIender, projecting >50 of its length beyond stort palm.

Gnathopod 2, propod more slender, shorter than carpus, palm shorl but distinct, slightly exceeded by closed dactyl.

Peraeopods 5-7, segment 5 shorter than segment 6. Peraeopods 3 , 4 , basis slightly broader than distal segments. Peracopheds 5-7, bases sublinear, not broadened; segment 6 shorter than in peraeopods 3 \& 4 .

KEY TO NORTH PACIFIC SPECIES OF POLYCHERIA

1. Urosome segment 1 posteriorly extended, partially concealing fused urosome segments 2 \& 3 ; peraeo-pods $3-7$, segment 5 not shorter than 6; uropod 2, outer ramus shorter than inner; maxilb 1, outer plates with 9 apical spines; maxilla 2, inmer plate, inner margin setose (Asiatic Pacific)
2.

-Urosome segment 1 not extended posteriorly, based ol urosome scgments 2 \& 3 open; peraeopods 3-7, segment 5 shorter than 6 ; urgpod 2 , inner ramus the shorter, maxilla 1 , outer plate with 7 apical spines; maxilla 2, innes plate with weak apical setar only (North American Pacific). . 4.
2. Gnathopods 1 \& 2 subchelate, palm distinct; peraeopod 5 , hasis expanded, longth $<2 \mathrm{X}$ width
P.japonicus ($\mathrm{P}, 44$)
-Gnathopods 1 \& 2 nuarly simple, propos palmar margins very shout or obsolete, peraeopod 5 , basis sublincar, denctly $>2 \mathrm{X}$ width 3.
3. Peraeopods 6 \& 7 , segment 6 distinctly shonter than segment 5 phon plate 1, hind corner rounded.
\qquad
—Perteopods 6 \& 7. segments 5 \& 6 subequal in Eength; pleon plate I, hind corner acuminate
4. Eye mediun, woveringanterior half of head; gnathopod 1 , dactyI hong, extending $>50 \%$ of its length beyond palm; coxa 3, anterior process strong length > 3 X basil widh; telson, tateral margins with $7-8$ spines. .
P. asborni (p. 38)
-Eye large, covering 3/4 width of head; gnathopod 1 , dactyl medium, exdendinge 50% orits length beyond palm; coxd 3, anterior process medium, lenglh $2-3 \mathrm{X}$ basal widdr; telson, lateral margins with 5 -6 spines 5.
5. Antenna 1 strongly setose posteriorly on flagellum and peduncular segment 2 gnathopod $A_{\text {, propod }}$ distinctly shorter than carpus, dactyl basally broad, thick; cosa 3, anternor process mediutn, length $>2 \mathrm{X}$ basal width
P. carinata (p. 42)
-Antema 1, flagellum and pedmenlar segment 2 moderately w weakly sctose posteriorly; gnathopod I; propod and carpus subequal in length, dactyl basally sletider; coxa 3 , anterior process short, length $<2 \mathrm{X}$ basal width
P. múvillae (p. 44)

[^2]the shonter, outer margin with a rew spines, all other nargins (of both rami) heavily planose-setose.

Telson relatively shorter, broadest medially, lubes mote deeply separated, margins less spinose than in female.

Distribution: Commonly encountered in tests of Amarouchum (Skogsberg \& Vansell, 1928), from Central Califormia north to BritishColumbia and southeastern Alaska; questionably southward to the Gulf of California and Galapagos. The probability is high that P. osbormi is a complex of sibling species orer such a broad geographical range.

Taxonamic Commentary; The female of the present material comparesclosely with the original figures of Calman (fig. 19, atove) based on material fron Puget Sound. Particularly diagnostic of the species is the small palm of gnathopod 1, greaty excented by the dactyl. The species Polycheria antarctica (Stebbing, 1888), described originally from sponges in the Antarctic and ANZAC regions is not a true synonymin P. obborni, but is adistinctive species that exthibits enenerally more plesiomorphic characters states (p. 49, fig. 25),

FIG. 19. Polycheria osborni Calman. Kirby Pt, Diana I, Barkley Sound. Male (3.7 mm)

FIG. 20. Polycheria osborni Calman. Femate ov. (7.0 mm) Puget Sound (modified from Calman, 1898)

Polycheria carintata, new species
(Fig. 21)

Material Examined:
 BRITISH COLIJMBLA:

Mainand coast: Atblone I., ELE Stn. H53, under boulders, LW, Aug. 7, 1964-1 femaleor (5.8 min) Paratype (slidemin.) CMN Cat. No. NMCC1994-0392; 2 additional females.
S. end Vancouver I.: Taylor I.. Trevor Channel, ELE Sth. Pse, from ascidians and sponges bencath boulders, LW, July 25. $1975-1$ female br. Il ($4,0 \mathrm{~mm}$) (slide me.).

McCaulay PL., Victoria, B. C. GWOTConeh diwe coll.. Aug. 26. 1976 - I female ov. (4.0 mm) Holotype (slide mt.) CMN Cat. No. NMCC1994-0390; 6 female, 1 subadultunale speciments. Paratypes. CMN Cat. No. NMCCI994-039I.

Diagnosis. Fenale br. It (4.0 mun). Urosome segment 1 and fused segments 2 \& 3 dorsally and dorso-laterally shasply ridged or keeled, not acuminate behind. Eye large, red or black (in aloohol), covering anterion $3 / 4$ of head width. Anterior head lobe very broadly rounded. Antennte subequal, flagella and distal peduncular segmenes richly armed with longish food-gathering (feeding) setae.

Mouthparts typical of N. American generic subgroup. Maxilla 1, outer plate, apical spines selatively long palp short. Maxilla 2 , outer plate, apex subtruncate, weakly setose Maxilliped, palp very short, dactyl small; ouler plate with 10 inner marginal spines.

Coxal acutely produced anteriorly; coxa 3 moderately produced, length 2 X basal width; coxa 4 blunt, rounded in front. Gnathopod 1 , propod relatively short and deep, lowes maryin with severall stiff setae; palm very short, dacty] nomal slender (in paratype), large, heavy, basally thick or broad, apparently abnormally developed in holotype. Grathopod 2 more slender, carpus and propod subequal in lengelli, palan very shori.

Peraeopods 3-7, segment 5 shorter than segment 6 . Peradopods 3 \& 4, basis relatively beavy, broader than distal segments. Peraeopods $5-7$, batses narrow, slightly broadened in 5: segment 6 with relabliyely strong antero-distal cluster of setac.

Plepphds mediums rami 12-14 segmented. Pleon plates 2-3, hind comers squarish, nol acuminate; pleon 3 setose below. Uropod I. peduncular anteriorly line with setae; rami clsely suhequal apiopl spines bot clongat.c. Uropod 2, rami much longer than peduncle: apical spines short. Uropod 3, outer ramus stender, length about 80 er inner ramus, outer margin with $2-3$ shori spines, othe margins spithose,

Telson lobes narmowing distally, tused in basal $1 / 4$, outer margins with 5-6 small spines.

Oistribution: Known from Sonthern Vancouver 1 , north to Athtone I wentral B. C. coast. Host unknown.

Taxonomic Commentary:. The species isclosest to P. mixilae in most ohatacterstates, but is distinguished mainly by features of the key (p. 40).

FIG. 21. Polycheria carinata, new species, McCaulay Point, B. C. Female Br. II (4.0 mm).

Polycheria mixillae, new species

(Fig. 22)

Material Examined (CMN coflections, Otawa): BRETISH COLUMBIA:

S. end Vancouver I.: Diana I, Kirby Pt, R. Anderson coll... from sponge (Mixilla imotustans). June 25, 1976-1 temale br $11(4.0 \mathrm{~mm}$) Holotype (side mt.), CMN Call. No. NMCC19940393; 9 other femetes, Paratypes. CMN Cal. No. NMCCI994-0395.
Bordelais Istels, entrance to Trevor Chanel, ELB Str, P20c, LW , in sponges and tunicates fundet,) collected from rocky walls of surge channels. Aug.9.1975-1 Eemale br. IT (4.0 monsislide min.

Diagnosis. Female ov, (5.0 man). Wrosome 1, dorsal carina low, not produced posteriorly. Urosome segments 2 [3, carinae or ridges inconspicuous. Head relatively shallow, anterior head tobe strongly rounded. Eyes very large, ovate, weakly faceted, covering anterior $3 / 4$ of head. Antennae subcqual, sleader. Antenna 1 , segment 2 posteros distally with longish setac: segment 3 short, Diagellum - If segmented, moderately strongly setose, setaelong. Antentia 2. Dagellum 3-segmented.

Lower lip broad, inner lobes large. Mandible, spine row with 2-3 blades. Maxilla I, inner plate with 1 apical setas outer plate with 7 slender apical spines; palp short. Maxilla 2. inuer plate small, weakly setuse apically; outer plate apes subacute. Maxilliped palp short, dactyl stout; outer plate, inner margin with $7-8$ watk masticatory spines.

Coxa 1 , anterior process short, with 2 apical setae. Coxa 3, anterior process relatively short, with single apical seta; coxa 4, anterion lobe rounded. Gnathopod 1, basts lacking hind marginal setae; propod shoner than carpus, lower margin distally with 5-6 stoul setac; polm short, exceeded by nearly 50 of of slender dectyl when closed. Gnathopod 2 slender, propod much shorter than cartus, palm distinct. barely exceeded by simple dactyl.

Peraeopods 5-7, segment shoriter (or not lomger) than segment 6. Perdeopods 3 \& 4, basis heavy, broader than distal segments. Peracopods 5.7, bases sublinear, very slightly broader in peracopods 5 恶 6; seyment 5 shorter than in peracopods 3 \& 4; coxa 7 proxured posteriorly, subacute.

Pleopods medium, rami-13-15: esmented, Pleonplates 1-3 broad, hind comers squarish or obtuse. Uropod 1. peduncle, anterior margiti strongly setose: Eami slender, subegual, apical spines elongate. Uropod 2, rami longer than peduncles, inner retmus short, inner margin with 2 longish slender spines. Uropod 3, inner ramus with inner inarginal spines and a few sethe; outer ramus shorter, outer margin lined distally with 3-4 short spines.

Telson lobes basally one-forath fused, narrowing dislally, margins distally with 4-6 shm spines, apises atute.

Coxal gills large, sac-like, weakly pleated, on peracopods 2-5, smaller on peraeopods 6 昆 7. Brood plates sublinear.

Mature male undescribed.

Etymology: The rom name refers to the genus of sponges. Mitribt, wilh which the amphipod species appeass to be commensally fasociated.

Distribution: Known only from the Barkey Sound region of Vancouver I. Commensal on Demospongia (Mixibla iverasignct

Taxonomic Commentary: The spocies is closely related to P carinam within the Noth American taxonomic complex of species. P^{2}. mixilaf is distinguished from it by characters prowided in the key (p . 40), by the somewhat less strongly reduced palp of the maxilliped, and by the more selose inner ramus of uropod 3.

WESTERN [ACIFIC SPECIES OF POLYCHERIA.

The principal character states of the three species of Polycheria, previously described and figured trom the westert Pucific region, aue here summarized for inclusion in analysis of relationshipsof the Norlli American Pacific tauna (see alsor Tathe III, and Fig. 31).

Polycheriajaponica Bulycheva

(Fig. 23)
Pobyeheria japoniod Bulycheva, 1952: 233-Barnard \& Karaman, 1991: 272.
'taxonomic commentary: The original description and figures were based on a male specimen, but pertinent non sexual character states are heme summatrized:

Fused urosome segments $2 \& 3$ bearing small dorsal spines and paired lateral ridges, antero-laterally masked by posterior projection of urosome segment 1. Antema 1 , peduncular segment 3 longer than adjacent flagellar segments.
Mandible, lent and right molars unequally reduced. Maxilla 1, outer plate with 9 apical spines; palp large. Maxilla 2, inner platestrongly setose. Maxilliped, palp medium, slightly exceeding tall outer plate.

Coxal 1 \& 2 anterionty rounded below. Coxa 3 lacking anterior process. Gmathopod 1 , propod relatively short, deep; pilm large, not exceeded by datyl. Gnathopod 2 . propend slender, suhequal in length to carpus, palm distinct.

Peracopods 3-7. segment 5 larger (not smaller) that segment 6; bases sfoul, somewhat broadened.

Fleon plates 2-3, hind conners acuminate. Uropod 2 , buter ramus the shonter. Uroped 3, outer ramus the shoner. outermargin spinose. Telson lobes narrowing distally, fused in basal one-sixth, margits weakly spinose.

FIG. 22. Polycheria mixillae, new species. Diana I., Barkley Sound. Female ov (5.0 mm)

FIG. 23. Polycheria japonica Bulycheva. Male (5.0 mm). Peter-the-Great Bay.

Polycheria annakusuensis Hirayama
(Fig. 24B)
Polycheria amtakusermis: Hirayama, 1984a, 194, IEss. 106-108.-Barnard \& Karaman, 1991: 271.-1shimaru, 1994: 43.

Taxonomic Commentary: Hirayanta' sdescriptions and figures (loc.cil) pertain essentially to a male specimen, but pertinent ron-sexual character states are here summarized:

Fused urosome segments 1 \& 2 with paired lateral ridges, basally masked by posterior projection of urosome segment 1. Antenna I, peduncular seginent 3 longer than
adjacent flarellar segnent; flagetlar setarion probably as in P. oriematis.

Mandible, left and right molars unequally reduced. Maxilla I, outer plate with 9 apical spines; palp long. Maxilla 2, inner plate with strong mediar setae. Maxilliped palp medium, about as tall as outer plate.

Coxae 1 \& 2 rounded below, Coxa 3 rounded anteriorly, Gnathopod I, propod subovate, lacking palm; dactyl short, strongly curved. Gnalhopod 2, propod slender, shorter than carpus, palm and dacyly shon.

Peraeopods 3-7, segment 5 larger (not smaller) than segment 6 ; bases litle broader than distal segmensextepi in peraeopod 5.

FIG. 24. Polycheria species, West Kyushu, Japan. (after Hirayama, 1984).

A. P. orientalis Female (4.5 mm).
IB. P. amakusaensis Male (4.5 mm) .

Pleon plates 2-3, hind corners atuminate. Uropod 1, rami subequal. Uropod 2, outer ramus the shorter, Uropod 3. outer ramus sliyhtly the shonter, outer margin weakly spinose. Telson lohes of female nor described (probably as in P. orientolis).

Polycheria orientalis Hirayama (revised status)
(Fig. 24A)
Polycherinatoliturienalis Hirayama 1984a: 187, ligs. 101, 103-105.-Bannard \& Karaman. 1991: 272.-Ishiman. 1994: 43.

Taxonomic Commentary: The pertinent taxonomic character states of Hisayama's description and figures, based on a female specimen, ane summarized here:

Fused urosome segments I \& 2 (one illustration shows an inter-segmental line! sith small spines and paired lateral nidges, hased partly masked by posterior projection of urosome 1. Anterna 1, peduncular segment 3 longer than adjacent flagellar segment; flagetlum richly anned with feeding selac.

Mandible. lefl and right molars not shown, probably as in P. amukusaensis Maxilla 1 , outer plate with 9 apical spines; palp large, Maxilla 2, inmer plate marginally setose.

FIG. 25. Polycheria antarctica species complex 1. acanthopoda Thurston.
2. dentata Schell. 3. gracilipes Schell. 4. nudus Holman \& Watling. (modified from Holman \& Watling, 1983)

Maxilliped, palp slightly exceeding tall outer plate.
Coxae 1,2, 是 3 rounded antero-ventrally. Gnathipod I. propod and carpus subequal; palin shont, barely cxceeded by dactyl. Gnathopod 2. propod shorter than carpus: palm small; dactyl very small, hook-like.

Peraeonods 3-7, segment 5 litte shortened, distinetly longer than segunent 6: bases sublinear bul broader than in P. amakusaensis.

Pleonplate $2-3$, him comers acominate: Uropud 1 , rami subequal. Uropod 2, vuter ramus the shorter. Uropod 3. outer ramus the shorter, outer margin wakly spinose. Telson lolyes long, narrowing dislally, fused in basal one-cighth. margins weakly spinose.

EXTRALIMITAL SPECIES

Polycheria aftarchica (Stebbing.

(Fig. 25.)
Dexamine antarctica Stebbing 1875: 184,
Tritata andaretioa Stebbing 1888: 451
Pobvheria amanctica Stebbing, 1906: 520, [igs. 90.91,Scliellenberg, 1931:214.-Thurston, 1974: 18.-Hotman \& Wauling, 1983: 221, [igs. 6 -9 (including fonms acamthopodu Thurston; dentata Schellenbergeracisipp: Schellenberg; rudW. (Holman \& Wating), —Barmard E Karaman, 1991; 271.

Taxonomic Commentary: Pertinent laxonomic character states from an assemblage of "Formae" of P. antarchica (cf. Holman and Watling. 1983), testored as distinct species of the antaretied eomplex by llan-atd \& Kaman (loc, cil). provide browder perspective to the anslysis of North Pactific species relationships (pa 61, fige 31).

Fused urosome segments 2 \& 3 dorsally with 4 spines, and paired lateral ridtes. Urosome I whth low dorsal carina, not produced postero-laterally to conceal base of urowome 2. Anterna I, peduncular segment 3 slightly longer than adjacent flagellar seyment: antennal flagella setore.

Mandibular molars prohably unequally reduced (cf. illusuration of Stebbing, 1906). Maxilla I, outer plate with 9 apical spines; palp medium, slighty sherter than outer plate. Maxilla 2, inner plate with sparse inner marginal setae. Maxilliped, palp litte reduced. exceeding vall buter plate.

Coxae I \& 2 rounded below. Coxa 3 with strong anteroventral process. Gnathopod 1, propod slender stonter than carpus; palm medium, liote exceeded by ductyl. Gnathopod 2. propod shonter than carpus, paltor relatively large, foot exceeded by dactyl.

Peraecpod 3-7, scement 5 reduced, shonter than 6: bases sublinear, litte troader than distal segments.

Pleon plate 2 \& 3 , hind eomers weakly acuminate. Uropod 1 , inner ramus dislitetly the shorier. Uropod 2, tarni suhequal. Uropod 3, outcr ramus much the shorter. outer margin neatly bare. Telson, lohes elongate. separated nearly to base, margins distally bare or weakly spinose, apices cath with spine.

DEXAMINOCULINAE, mew subfamily

 (see Fig. 2(b):26)Incertac scdis, Barraud. 1969a: 480, 「ig. 173a.
Dewaminidae (part) Ledoyer, 1979:65.-Lowry, 1981: 190. Prophliantinaw Bamard \& Karaman, $1991: 273$ (key) (part).

Type genus: Dexaminoculus Lowry 1981: 191. (Sphaerophriedmus Spandl. 1923).

Diagnosis: Ara Inda-Pacitic monotypie group. of unusual morphology, about which little is known except for the studies of Lowry (loc, cit).

Body smooth or weakly toothed on peraeon. Pleon segments and urosome I, each with mid-dorsal carination and postero-dateral marginal teeth or cusps. Urosome segmenth 1 \& 2 ridged mid-diorsally and mid-laterally. Rostrum medium. stender. Eye large, on produced lateral cephalic Whe. Antenna 1 elcmete (both sexes) accessory flagellum vestigial Antenna 2 very short, flagellum vestigial (femato); elongate, with pefuncular brush settee (male).

Mouthparts nearly regularly dexaminid. Mandibular molar triturative, Wades few, Maxilla I, outer plate with 11 apical spines. Maxilla 2, plates not \$lenderized. Maxilliped, jumer plate small: palp 3-segmented (female).

Coxae 1-4 medium, unequal, 3 smallest (allowing for respiratory current exin?). Lower margins crenulate and/or setose. Cosa 5 targe, anterolobate. Gnathopods dissimitar in size and form, distinctly subchelate. Gnathopod 1_{+}propod sexually dimorphic, somewhat as in the typical dexaminid. but with the donsal notch reduced to a shallow depression, and the pallo deeply excavate, rather than convex. Perwopods 3-7 sletider, regular inol subchelate); peraeopod 5 slightly the longest. Perateoperds 5-7, bases dissimilar, variously browdened and lobate below; segment 5 not shortened; dactyls slender.

Pleon plates large: pleon plates 2 \& 3, postero-lateral margin thothed, hind torners acuminated, hooked. Pleopods not described. Uropods I \& 2 large, regular uropod 2 short. Urophed 3, rami large, broady lanceolate. Telson large, clongate. lohes not diverging apically.

Coxal gills and brood plates not described.
Species: Detuminoculus achtipes Ledoycr. 1979 (Madagascar); D. cowimonas Ledoyer, 1982 (Madugascar); and D. sroebbent (Spandi, 1923) (Lowry, 1981) (Madagascar to Australia).

Taxonomic and Biogengraphic Commentary: The genus Dexaminoculus was first described as Sphaerophwatmus by Spandl (1923) and placed in taxonomic category incenta sedis by Barnard (1969a). Two further species were descrihed, twoth From Madagascar, by Ledoyer (1979, 1982). The genus is narrowly Indo-Facific, not yet known from Japan and the North Pacific region. but might be andicipated at the northem limit of coralline substrata.

FIG. 26. Dexaminoculus grobbeni (SpandI). Female (3.6 mm) Male (3.9 mm) Great Barrier Reef. (after Lowry, 1981).

The genus was renamed and fully redescribed by Lowry (Lux' cit), based on more complete material from the Great Bartier Reef of Australiad (Fig. 26), He likened it most closely to the genus Dextmimetd Schettenteriv (1928). On questionable grounds, Barnard \& Karaman (1991) placed the genus within their realigned subfamily Prophliantinac. Howewer, as LowTy (luc, cil) and Ishimaru (1987) concluded, the balance of character states of Dexaminoculus are closer to the lrue dexaminins. Dewmine Paradexamine and espectally Dexaminella(Figs. 2(c); 29). Particularly significant is the form of the coxal plates pleon carination. and the sexually dimorphic gnathopod $1+$ as well as mouthpart morphology. However, the exlreme location of the eye is non dexamionn, and the lack of sulachelae on the peraeopods is non polycheriin. The authors, therefore propose the new subfamily Dexaminoculinae to tacilitate recogntion of its distinctive, major, taxonamic differences.

Prophliantinae Nicholls
 (see Fig. 2(d))

Propthiantidae: Nichols, 1939:312_Barnard, [1969a:432. -Boustield, 1982: 278,—lshimaru, 1994:43.
Dexaminidae (part): Barnand, 1970a: 163,-Bellan-Santini, 1982: 212.
Dexaminidae (Prophliantimae) Barmard. 1970; 161:Ishimara, 1987: 1413-Barnard \& Kamaman, 1991: 273.

Type genus: Prophicas Nicholls, 1939: 312.
Genera: Guepma Chevrex. 1887: 302 (=Priniosstes. =Dexamonica): Hemstoriopss Schellenberg. 1938:12.

Diagnosis: Body small, shori, broad, surfice offen with rugose integument. Feraeon with low middernsal carina (part or all), but no dorsal prowesses. Urosome segment I nay be fused with fused segments 2\& 3. Rostrum wery short, Anterior bead lobe mainly rounded. Eyes pigmented. medium. Antenna 1 (female) short, pedunculat segment 2 shorter than I. Accessory thagellum minute or lacking. Antenna 2 (female) short; ini male, peiluticle shont, segment 4 broad, flagellumi elongate.

Mouthparts modified. Lower lip, inner lobes distinct. Mandible: molar variously redieed or modified; spine row lacking. Maxilla 1. palp I(2) segmented; outer plate with 7-9 apical spines. Maxilla 2, plates modnfied, reduced. Maxilliped, outer plate large, inner plate small, palp shortened.

Coxae 1-4 slender, decp; coxa i shortest. Coxa 5 yery large. Gnathopods stender, weakly subehelate; carpus usually longer than propod; palmar margins small, distinct. Guathopod l, propod not sexuatly dimorphic.

Peraeopods 3 \& 4 simple, not subchelate, segment 5 not stronylyshonened. Perteopods 5-7 short, generally dissimi-
lar in form but liutle in size (peraeopod 7 shontest); bases Yariously broadencd, unlike; segment 5 litte shortened, often broadened; dactyls simple, shorl to medium.

Plenpods small: peduncle broadened, rami short. Uropods I \& 2 shor mani usually unequal in length. Uropod 3 shorl, margins spinnse (weakly setose in male).

Telson lohes medium, separated nearly to base, not divergile, apices truncate, spinose.

Coxal gills simple, not strongly pleated or lobate, on peraeopots $2-6$ otty, Brood plates small, linear, with apical setac.

Tisxonomic Commentary: The authors concur with the decision of Barnard (1970a,) followed by Hirayama (1984, 1986, to transfer Guemea from family Dexaminidae to the Prophliantinac. Clusier analysis (p. 56, Fig. 29) further conliums its relatively close morphological similarity 10 Prophtias and Housoriopsis, Guennea is a complex of diverse species groupings, some of which have been given formal gentric andor subgeneric status (Prinassus in the N . Pacific region and Guernea elsewhere). However, the authors alsoagree with the decision of Bellan-Santini (1983) and tshimaru (1987) to resubmerge the names Prinassus and Deramonica in the symonomy of Gupmea Chevereux. 1887.

Barnard and Karaman (1991. Loc cit.) reduced the Prophliantidae to subfautily status within the Dexaminidae. This decision is suppotted by the present analysis (p.56). As noted by Tshimaru (1987), those two authors also relegated the genus Dexamimocudus to the Prophliantinac on dubious grounds, and as noted here, without suitable concordance with their own subfanily diagnoses. The coral-dwelling Dexwnimocudus is here considered distinctive at subfamily Jeycl (above), In balance, its phyletic affinities are closest to the primitive, nest ting Dexamininae, and rather remote from the fossorially spectalized and apomorphic Prophliantinae.

Guernea Chevreux

Guerne Chevreux, 1887b: 302,-Stebbing, 1906: 521 (part)-Bamard, 1970a: 11, figs.-Hirayama, 1985: 395.-Bellan-Santini, 1982: 225-Ishimaru, 1987: 1395.1shimaru, 1994; 43.
Guernea (Guerte'a) J. L. Bamared, 1970: I69,-Hirayama, 1985: I.-Hirayana, 1986:488-Bamand Karaman, 1991: 274.

Frinasms Hansen, 1888: 82.
Guermea (Primassush T. L. Bannard 1970a: 169.-Hirayama, 1985: 8.-Hirayama, 1986 a: 493.-Barmard \& Karaman. 1991: 275.
Dexamonica J.L. Bamard, 1958: 130, pls. 26-27.-Bathard, 1969a: 203.

Type Species: Hellefia coalifa Naman, 1868.

Species: About 24 described species and subspecies world-wide (Barnard \& Karaman, 1991 , updated). The following 11 species are recorded from the Nonth Pacific region: G. woensis Ishinanu, 1987; G. Pongidactya Hirayama, 1986a; G. matkiei Hirayama, 1986k; G. magmaphiostomed Hirayarte 1985; G. minor Istiman 1987; G. mullispinta Hirayama, 1885; G. quadrispinosa Stephensen, 1944; G. rectocephalus Hirayama, 1985; G, reduncans J. L. Barnañ, 1958; G. sombati Hirayama, 1986a: G. terelamina Hitiyama, 1985; G. somiokoensis Hitayama, 1985.

Diagnosis: Postertor peraen and all pleon segments weakly carinated and/or posteriorly mucronate. Urosomite 1 separate, with mid-dorsal ktel or hump (both sexes). Urosomites $2 \& 3$ coalesced. variously with small dorsal spines. Rostrum very short; anterior head tobe sharply rounded. Eyes medium, rounded, weakly fucted. Antennae (female) short. Antenna 1 , tagellum 48 segmented; accessory flagellum minute or lacking.

Lower tip large, outer lobes with prominent shoulder cones. Mandibular molar variously triturative, often complexly divided, lefi lacinia 4(5) dentate. Maxilla 1 , palp L(2)-segmented, outcr plate with 7-9 apical spines, inner plate O(1)-setose. Maxilla 2, inncr plate snall, 2-5 setose. Maxilliped, innes plate very short, apex with 2-5 long setae; outer plate lange, palp 4-segmented, dactyl short.

Coxae 1-4 medium, natow, strongly overlapping, rounded below. Coxa 5 very large, deep, postero-lobale. Grathopods 1 slightly smaller than 2 , basis with distinet proximal "buccal bend"; catpus relatively sbort and deep, little longer than propod; palm distinct

Peraeopods 3 \& 4, segment 5 shorier than 4 \& 6, posterior margin spinose; daetyls medium. Peraropods 5-6 subsimilat in form and length; segment 5 not shortenet, dactyls various. usually reversed. Peraeopod 7, basis very broad; segments 4 \& 5 broadened (not greatly, andor asymmetrically, asin houstoriopsish, margins strongly setose; dactyl short.

Pleon plates $1-3$, hind comers rounded, or squared. Uropods $1 \& 2$, outer ramus the longer (usually), apices with long apical spine. Uropod 3, rami short, subequal, inner margins spinose (setose in male). Telson lobes medium, not diverging, outer nargin and apex variously armed with seate and/or spines.

Distribution: Mainly tropical and warm-temperate (Inth-Pacific and tethyan) coastal shallows; fossorial in time sediments. Of the 24 specits and subspecies described to date world-wide, 12 (one-half) have been recorded trom the North Pacific region, but only one of these from the North American Pacific coast.

Taxonomic Commentary: In balance of charucterstates Guernen appears more elosely related to the type genus Prophiar than to the more highty specialized genus Hakstoriopsis, It differs front Prophias, however, in its stronger
gnathopods, unexpanded segmen 4 of peraeopod 5, and its dorsally carinated, unfused urosome segment 1 .

Guentea reduncans (J. L. Barnard)
(Fig. 27)
Dexamonica redaricuns J. L. Barpard, 1958: 130, pls. 26. 27,-Staude, 1987: 382.
Guenhea Prinassus, redtoncans Bamard 1970a: 173, figs. 1-3-Barnard \& Karamlăn, 1991: 275.
Guernea reduncans Austin, 1985: 604.

Materlial Examined:

BRITISH COLUMBM: Queen Charlote 15lands, ELB Sins. 1957: H4a moulh of Yakoun Bey, July 19-1 female with juveniles); W I1. Head of Gudat Bay, Gratham L.. July 28 - I imui.

Vancouver I.. ELB Sin, B27, Dotger Channel, SW end Dianat I. July 8,1976 - 1 male, 1 Femate ov. Off McCauley, Pt_{s}, Victoriat, B, C. G. W. O'Connell Stns., Aug. $28+1976$: WIOB - 1 male; W $156 \mathrm{~B}-1$ male, 3 licmales (ow) (fig' d . specimens). Off Victoria, C Low colf A Ag., 1981 - 3 males, 5 females, 10 imm ,

Diagnosis: Female ov, (2,4 mim); male (2.5 mm). Peraton segments 6 路 7 , and pleon segment $1-3$ with low mid-dorsal ridge, slighly acute behind. Urosomite 2 with recurved mid-ionsal carina. Fused urosomites 2 \& 3 somewhat homped mid-dorsally, with $2-4$ small spines. Eye medium, subovalte, aboul 25 -faceted. Antenna I. flagellum 5 -segmented; peduncular segments $1-3$ (male), anterior margins minutely creaulated; segment I deep, poscerior margin distally with clusters of longish brush setae. Antenna 2, nageltum 3-segmentad; flagellum (male) elongate (20+ segments), peduncular segments 4 \& 5 enlarged, anterior margin of 4 with clusters of short brush setae.

Mandible, grinding surface of molar modified but entire, distal piumose seta short; lef lacinia 4-dentate. Maxilla 1, outer plate with 7 apical spines; palp I-segmented, apex with 2 setae. Maxilla 2. inner plate narrow, with 5 margital setae. Maxilliped, inner plate with 3 long apical setae; palp segment 3 and shor daclyl exceeding tall outer plate.

Coxae 1-4, Jower margins finely crenulate and weakly selose. Coxa 5 , anterior lobe small rounded, hind Iobe very large, deeply rounded. Gnathopod 1, carpus and propod relatively short. deep, subequal in length; propod widening distally lo convex palm, with 3-4 postero-distal spines. Gnathopod 2 slightly larger than gnathopod 1 ; carpus and propod slighty more slender and elongate; palin of propod with 3 poctero-distal spines.

Perateopods 3 \& 4, segment 5 distinctly shorler than 4 \& 5 , hind margin with 2 stout spines increasing distally; dactyls medium. Peraeopols $5 \& 64$ segments 5,6 , and dactyls reversed; basis of pereteopod 5, hind tobe not strongly produced below: segment 4 nomally broadened. Peraeopod 6 ,

FIG. 27. Guernea reduncans (Barnard). Off Clover Pt., B. C. Fem. (2.3 mm) Male (2.0 mm)
basis narrowing disially, hind margin nearly straight, not markedly concave. Peraeopod 7 , segtuents 4 \& 5 not exceptionally broadened, length of each greater that width: dactyl slender, medium.

Pleon plates 2 \& 3, hitu chmers squarish or ripunded. fower margins weakly selose. Uroped 1 , tips of ramiexceeding uropod 2 but not uropod 3 ; peduncle with $3-4$ proximal outer lacial setac. Uropod 2, outer ramus the lionger, apical spine about $2 / 3$ its length. Uropod 3 , rami about 50 er longer than peduncle, margins with a few stout spines; in made, itmer margin or twoth rami are plumose-setose.

Telson not longer that wide, lobes fused basally. suburarginally with penicillate setac, apices each with single spine,

Distribution: Sonthem British Columbia, Waskington and Oregon, to southern Califormit, subtidally to about 100 m. in depth, in fine sand and muddy smad. The present records are the first authentically from British Columbia,

Taxonomic Commentary: The species apparently varies some what throughout its range. Material from Catiformia, illustrated by Barnard (1970 a , goc cid , exhibits distinct, posteriotly mucronate, perdeonal and pleonal carinations, and more elevated dorsal tooth on urosomite I. Urosomites 2 \& 3 bear 6 (vs. 2-4) dorsal spines, and apical spines of the uropod rami are longet. In southem material, the eye of the female is smatler, the flagellum of antennal is 6 - (vs. 5-) 5egmented, the posterior spines of geyment 5 of peratopods 3 \& 4 are longer, the posterior lobe of the hasis of peraeopod 5 is deeper and, in peracopod 7_{1} segment 5 is shorter and broader. Morcover, in maxilla 1 of Califomian material, the patp has a weak suture dividing it into two segments, the outer plate bears 8 apical spines, and the inner plate a single apical seta. In males, the eye of northem material is latger with thore numerous onnmindidia.

Guérnea redurcans appears mote chosely similan to G. coalita and G. rorderskiold of the North Atlantic region than to species of the western Pacifie described and figured by Hirayama (1985,1986) and Ishimaru (1987) (see below",

WESTERN N. PACIFIC SIPCIES OF GUERNEA

To date eloven species of Guernea have been recrded and/or newly described from Astatic North Pacific localitics, as follows:
I. Sea of Japan Sea, Russian Codst.

1. Guemea specien (identified as G nordenskioldi by Bulychevit, 1955).
II. Coast of Hokkaido (materiat of Ishimaru, 1987).
2. Guernea ezuensis (males, remales) - Otsuchi, Notsuke península.
3. G. minor (males, females) - Shirahama,
[I. West Kyushu coast, Japan (material of Hirayama, 1985):
4. Guernea magnaphilostoma (males, Females) - Ariake Sea.
5. G. seretamina (female) - Shijiki Bay.
6. G. sombokensis (females, males) - Tomioka Bay
7. G. nwhisping (male, immatures) - Tomioka Bay.
8. G. rectocephald (females) - Tomioka Bag.
III. China Sea Coast (material of Stephensen, 1944),
9. Guernea quadrispinosa (male) - Liao-tung peninsula.
IV. Hong Kong (material of Hirayana, 19863.
10. Guerned sombari (male, fermale),

I L. G. lorgidacryta male).
12. G. mockie' (males, females).

Taxonomic Commentary: The above spectes from the Japan and China Seas exhibit a considerable range of morphologital diversity. However, a reasonably close perusal of illustrated characterstates did nor reveal well-defined subgroups but rather a series of morphological specializations that presumably adapt each species for a particular niche and life style. The species range phyletically from the relatively primitive G. ewoensis, ir which nost character states are plesiomorphic, to thehighly speciatized minute species, G. minor, in whiclimost character states are apomorptic. None closely resembles the type spectes, G. coaliva (Norman) from the North Allantic region, but differs especially in the form of the gnathopods, and in the shape of the mid-dorsal process of urosome I. Barmard (1970a) has previously cominented on differences between the material of Eulycheva (1955) from the Japan Sea (No. 1, above), and his material of G. mordenskiodd from North Atlantic coastal regions, and of G, redurcarsmns from Califortia. The last two species were both fully illustrated in his extensive generic revision (Bamard. 1970a).

A key to North Pacific species is beyond the soppe of this study. However. G. redurtums was found to differ from species Nos. 2, 6, and 10 in which the outer plate of maxilla 1 has 9 apical spines; from Nos. 3, 5, 7,8, and 12 in which the outer ramus of uropod 3 lacks plumose swimming setae in the malle; and from No. 9 in which the apical spines of the rami of uropods 1 是 2 are extremely long G. reduncans dilfers perhaps least from Nos. 4 \& 11 (above) lyut lyoth the lateer species have relatively slender gnathopods, and telson lobes that are marginally and/or apically seloze. Hopefully, this study may stimulate a thorough revision of this challeng ing assemblage of Western Pacific prophliantids.

FIG. 28. Prehensile Peraeopods in Dexaminoidea (modified partly from Vader, 1983)

A. Notolropis falcathas B. Dellartye enamalla C. Tritaetagibbosa D. Polycheria obinsa

Discussion and Conclusions.

This study treats the systematics and distributional ecology of some 12 species of dexaminoidean amplipod crustaceans occurring in North American Facific coastal marine waters. from the Bering Sca to Northern Catifomia. This fauna is small and relatively minor in contrast to several large and diverse regional gamunaridean superramilies prewiously treated (e.g. Gammaroidea (Boushicld, 1979): Ampeliscoidea (Dickinson, 1982, 1983); Corophioidea (Conlan, 1983); Phoxocephalovidea (Jarrett \& Bousfietd 1994), and others of this series now in preparation (e.g. Talitroidea, Eusiroidea, Hadziodea (Bonsiield Staude, 1994). Moreover, regional dexaminoideans include only about 7 ? of the -200 species described to date, world-wide. However, this small fauna is remarkathe in containing: (1) a large component of the single most primitive subgroup, the subfamily Alylinac; (2) significanu representation from the most advanced sublamily, the Polycheriinac; (3) only one species from the other six phyletically interne diate subfamily groups. Thus, in combination with opurilemar dexaminoidean groups from the Asiatic North Pacific coastal marine region, this modest North Annerican assemblage makes up in taxonomic and phyletic, qualify what it lacks in species numbers, and thereby provides abasis for review and reclassilication of the entire world fauna not previously realized.

Natural relationships annong species and generic groups are here tested more critically by means of a modification of the phenetio UPGMA (cluster analysis) system of Sneath and Sokal (1973). The modified but relatively unsophisticated system employs an overall criterion of playletic similarity terned the Plesio-Appomophic (P.-A.) Index in which low numbers signify phyletically primitive, and high numbers advanced, taxonomic groups. The system has been utilized effectively in simular studies by Conlan (1983), Staude (1986) and Jarrett and Bousfiekd (1994). Within the superfamily Dexaminoidea, analysis of generic similarities is based on 21 characters and corresponding 42 character states given in Table 1 (p. 57). The lepechinellids are here represented pragnatically yy one genus, Lepechine ilde, mainly
because it contairs more than 90% of the species, and the three other described genera do not show differences (from it) in the character states utilized in (bis analysis.

The resulting phenogram (Fig. 29) "clusters oul" Iwo main subgroupings at less than 50% similarity, viz. a primitive, thin-thodied, alylid family group (with P. A. indices of 9-24) on the left, and a relatively advanced, broad-bodied, dexanimid lamily group (with P. A. indices of 15-29) on the right. The atylids are especially primitive itr retaining a number of presumed ancestral features(c.e. Bousfield, 1983) such as basic body carination, peracopods, pleopods, mouthparts, and pleated gill structure, whereas the dexaminoideans tend more strotely to reduction or loss of body carination, mouthipart armature, and modification of the peracopods lowards "prehensility" on the one band (Fig.28, above) or fossorial life style on the other (Fig. 2 (d), p. 7).

Within the Atylidac, four subgroups "cluster oul" with parred character state similarities between 60 and 75%, that are here recognized at subfamily level. These include the very primitive large-hodied Atylinae (P.-A. Index of 9) on the one hand, and the advanced, stmall-bodied Anatylinae (P - A. Index of 22-24) on the other. The other two groups, Nototropinae and Lepechincllinae, intermediate in body size and phyletic positioning (P. A. indices of 16-19), trend to a more free-living, epibenthic and pelagic life style, with strong deep-water and abyssal components. The biogergraphical signiftcance of these phyletic relationships is noted below (p. 60).

Whithin family Dexaminidas, containing nearly twice the number of genera, four subfamily groupings are similarly recognized. These "cluster oull" at slightly higher levels of character slate similarity (60 - 77%). These subfamily groupings include the relatively primitive Dexamininae containing six relatively similar gencra (P. A. indices of 15-24) on the leff, and the advanced, highly specialized and commensal pair of genera comprising the Polycheriinae (P.A. indices of 27-29) on the right. The two phyletically intermediate subyroups (P . A. Indices of 19-21) encompass two subfamilies of widely differing morphologies and life styles. wiz. the monotypic coral-dwelling Dexaminoculinae, on the

TABLE I. GENERA OF DEXAMINOIDEA: CHARACTERS AND CHARACTER STATES

CHARACTER	CHARACTER STATE VALUE		
	Plesiomorphic	Interriediale	Apomorphic
	1	I	2
1. Rostrum	long	medium	short
2. Body form	very slenider		short and stout
3. Thorax dorsum	spinose		not spinose
4. Accessory flagellum	1-segmented	minute	lacking
5. Sexual dimorphism of antennae, gnathopds	strong		weak or none
6. Mandibulas palp	present, strong	Weak	lacking
7. Mandibulã molar	Iarge, triturative		non-triturative
8. Lower lip, inner lobes	lacking	wealk	well developed
9. Maxilla 1: palp	2-segmented		1-segmented
10. Mexilliped palp	4-segmented		3-segmented
11. Coxal plates 1-4	smallest anteriorly		deepest anteriorly
12. Coxal plate 5	shallow		deep (about $=4$)
13. Gnathopods 1 \& 2. propod \& carpus 14. Peraeopods 3 \& 4	elongate ${ }_{\text {cher }}$ simplidactylate.		shon ${ }^{\text {d }}$ deep subchelate
15. Peracopols 3 \& 4 , length of segment 5	$>$ segment 4	<segment 4	\ll segment 4
16. Peraeopods 5-7, width basis	brade, suborbicular		narrow
17. Peracopods 5-7. similarity	similar in size and form	unlike in size or form	unlike in size and form
18. Pleon, dorso-laterat ammature	toothed		smooth (or nearly so)
19. Urosome 5 最 6. dorso-lateral "wings"	present	Weak	leacking
20. Uropod 3, rami 21. Telson lobes	lanceolate; margins plumose-setose separate, converging		I inear; margins spinose basally fused

one hand, and a complex of thise small bodied, fossorial genera withitn the Prophtiantinae on the other. The Dexaminoculinae and Polycheriinae are linked naturally to the Dexamininac by greater overall character state similanity of the peraeopods and most other boly appendages, inciuding. similar sexual dimorphism of the propod of gnathopod 1 , apparently unique to this farnily within all gammaridean
amphipod superfamilies (Fig. 2, p. 7), Close comparison of itvividual character states sugests that the Prophliantinae differ from the Dexamininae somewhat more strongly than semi-pbyletic numerical taxonomic methodology actually reveals. This methodology may be arguably more susceptible tohomptasions or convergent similarities thancladistic analytical methodology A broader cladistic analysis, not

FIG. 29. DEXAMINOIDEA: PHENOGRAM OF GENERA.

atlempted in this regional study. may show greater phyletic significance to the differences, especially in gnathopod structure, and perhaps justify restoration of the Prophliantions to family level of recognition.

Within the rnonolypicgenus Aryus(subfamily Atylinae). an amphi-North Pacific near-total assemblage of 10 species may be phenctically amalyzed, based on 20 characters and character states outlined in Table ll, The resulting phenngram (Fig. 30, p. 60) encompasses two not very closely similar subgroups, a primilive large bodied carinarre-tevidensus assemblage (P. A. Indices of $10-21$) on the leff, and a more
advanced, generally smatler bodied collingi-friders assemblage ($\mathrm{P} . \mathrm{A}$. indices of 20-33) on the right. The most primitive members of the carinatus subgroup, A. carinatus and alassovi, appear not far removed in basic momphology from large regionally pocuring gammaroidean amphipods (e.g. various Anisogammaridse, and the Gammarus setosus -wikkitakii complex wiltin tamily Gammaridae: see Bousliedd, 1979). Within the A. levidensus subcomplex. including A. ckmant and A. bruggeni, some reduction of mouthparts (e.g. nnandibular palp) and specialization of body appendages (e.g. pectinate setation of gnathopod

TABLE II. SPECIES OF ATYIUS: CHARACTERS AND CHARACTER STATES.

character	character staje value		
	Plesiomorphic	Intermediate	Apomorplic
	0	1	2
1. Body form	wery slender		short and stout
2. Thorax, dorsum	spinose		not spinose
3. Accessory flagellum	1-segmented, minute		lacking
4. Sexual dimorphism of antemae, gnathonds	strong		wak or none
5. Mandibular palp	present, strong	wealk	lacking
6. Mandibular molar	large, triturative		non-trilurative
7. Lower lip, inner lotes	lacking	weak	well developed
8. Maxilla - , palp	2 -sagmented		1 -segmented
9. Maxilliped palp	4 -segmented		3 -segmented
10. Coxal plates 1-4	smallestatateriorly		deepest anteriorly
11. Coxal plate 5	shallow.		deep ((about $=4$),
12. Gnathopods 1 \& 2, propod \& carpus	elongate		short \& deep
13. Peracopods 3 \& 4	simplidactylate.		subchelate
14. Peraeopods 3 \& 4, length of segment 5	$>$ segment 4	<scgment 4	<< segment 4
15. Peraeopods 5-7, width basis	broad, suborbicular		narrow
$\begin{aligned} & \text { 16. Peraeopods 5-7, } \\ & \text { similarity } \\ & \hline \end{aligned}$	similar in size and. form	unlike in size or form	unlike in size and forth
17. Pleon, dorso-lateral armature	toothed		$\begin{gathered} \hline \text { smooth } \\ \text { (or nearly so) } \end{gathered}$
18. Urosome 5 d. 6. dorso-lateral "wints"	present	weak	lacking
19. Uropod 3, rami	lanceolate; margins plumose-setose		linear", margins spinose
20. Telson iobes	separate, converging or staight.		basally lused, spreading

propods) is evident (Fig. 7). Within the collingi group, the more advanced tridens subgroupexhibits weakest body carination, and most strongly modifed pratopods in which character states trend, probably convergently, will comparable fatures of the Notoropiinae (Fig. l(b)),

The North Pacitic species of the bighly specialized yenus Polycheria (dexaminidsublamily Polycherinae) may
also be analyzed numerically on the basis of 20 characters and corresponding character states outlined in Table III (p. 61). Character states of the P. amaretica complex of species of southern oceans is included here for broader perspective on mophological relationships within the genus. The resulting phenogram (Fig. 31, p. 62) "clusters out" two major subgroups, a primitive japonica subgrouping of three west-

FIG. 30. PHENOGRAM OF SPECIES OF ATYLUS

ern Pacific species (P . A. indices of 8-19) on the left, and a highly advanced osbormi subgroup (P. A. Indices of 26-28) on the left. The osborpi subgroup exhibits sigmiticantly greater reduction of moulhparts and specialization of coxal plates, peraeopods, and uropods, differences perhaps related to differing life styles in associadion with differing host (ryanisms.

Although the combined North Pacific and Polycheria anarctica assemblages. in who, represent only about onethird of the world-wide faunta, some tentative inferences may be drawn. The North American and Asiatic subgroups differ
very significantly from each other, clustering at less than 50% similarify, and perhaps meriting separate generic (certainly subgeneric) recognition of the North American assemblage. Such would seem lurther justified by the tact that the antarctica subgroup, closer to the generic type P. teruipes Haswell lrom southern oceans, clusters much more closely with the Asiatic than with the North American Pacific osborni group. Hopefully, this limited study will point the way to a more broadly based solution to phylctic relationships and formal classiltication within subfamily Polycheriinate.

TABLE III. SPECIES OF POLYCHERIA: CHARACTERS AND CHARACTER STATES

CHARACTER	CHARACTER STATE VALUE		
	Plesiomorphic	Intermediate	Apomorphic
	0	1	2
1. Antenna I, segment 3 length	$>$ flagellar segm ${ }^{+1}$	$=$ flag segmit	< flag. segm't
2. Mandible: number of blades in spine row	4	3	1-2
3. Maxilla 1, number of outer plate spines	9		7
4. Maxilla I, length of palp	exceeding outer plate	$=$ outer plate	shorter than outer plate
5. Maxilla 2, inner plate. No. marginal setae	many (>10)	3.5	0-2
6. Maxilliped. length of palp	exceeding outer plate	$=$ outer plate	shorter than outer plate
7. Coxae 1\&2, lower máryin	rounded	squared	front acute
8. Coxa 3, lower fiont comer	rounded	process small	process large
9. Gnathopod I, palm of propod	Iong	medium	short
10. Gnathopod 2, palm of propod	longs	medium	short
11. Peracopods $3 \& 4$. length of segm 45	$3 \operatorname{segm~}^{\prime} 6$	$=\operatorname{segmit} 6$	$<\operatorname{segm}^{1} 66$
12. Peraeopods 5-7 length of segm'l 5	$>\operatorname{segm}{ }^{2} 6$	$=\operatorname{seg}^{2} \mathrm{~m}^{\circ} \mathrm{t} 6$	$<\operatorname{segmb}^{\prime} 6$
13. Peraeopod 7, width of basis (segm"t 2)	broadened	sl. broad	sublinear
14. Peratopods 5-7, length of segin't 5	$3 \operatorname{segm}^{2} 6$	$=\operatorname{seg} 2 \cdot 16$	$<\operatorname{segmit}^{6}$
15. Urosomite 2 ${ }^{2} 3$ Number dorsal spines	numerous	4	0.2
16. Uroped 1, peduncular outer marginal sctae	Lacking	fow	strong row
17. Uropod 2, length of inner ramus	$>$ outer ramus	= outer ramus	< onter ramus
18. Uropod 3, length of rami (female)	subequal	slightly uncqual	markedly unequal
19. Telson Jobes, basal fusion	litte (1/6)	intermediate	much (1/3-1/4)
20. Telson lobes, number of lateral spines	many 7.8	intermed.(4-6)	few (0)3

Biogeographic Considerations

The limited occurrence of Dexamingidean amphipods in the North Pacific region allows for few broad conclusions conceming regional liogeography of the group. However, the regional and world-wide distributional tecord of component families and subtamilies, including the more diverse western North Pacific dexaminoidean futha, is thore helpfu]
(see Table IV. p. 62). Less than 200 world species are ercompassed by 22 gencra ant 8 subfamilies (columas 1, 2), The low speciesgenus ratio provides a relatively high index of morphological diversity within the superfamily and, by inference, a relatively fing or ancient evolutionary history of the group as a whole.

Within family Atylidac, 3 subtamilies are mainly lithoral and sublittoral (column 7), whereas the Lepechineltinae

FIG. 31. PHENOGRAM OF SPECIES OF POLYCHERIA

(containing nearly half the known atylid species) is abyssal, thainly in Indo-Pacifte and Atlantic regions. The $L I$ species of sublamily Atylinae (Alyws) are endemic to the North Pacific region, with a single oballier in the Atantic and one possibly in the Antarctic. By contrast, the 20 species of Nototropinat are mainly Inde-Facific and Alantic, with at few outliers reaching the westem Pactitic. The litlle known sublamily Anafylinae is also mainly Indo-Pacific, with 2 species reaching the Sca of Japan but rone attain the Norh American Pacitic const.

Within the more diverse and species-rich family Dexaminidae, all four sublamilies are primatily Indo-Pacific, and the few descrited species within subramily Dexaminoculinae are endemic there. A few members of the primitive subvanily Dexamininae penetrate into temperate waters of the Nonth Adtantic and southern Japan (K Yushu). Subtamily Prophtiantinae is also Indo-Pracific and southerns, Fut with stronger representation in the North Atlantic and western Pacific regions. By wontrast, the phytetically thost advanced subfamily, Polycheriinae, penetrates fairly strongly

TABLE IV. GEOGRAPHICAL DISTRIBUTION OF DEXAMINOIDEA*

TAXON	DIVERSITY		DISTRIBUTION				$\begin{aligned} & \text { DEPTH } \\ & Z O N E+ \end{aligned}$
	$\begin{gathered} \text { NO. } \\ \text { GEN. } \end{gathered}$	$\begin{gathered} \text { NO. } \\ \text { SPP. } \end{gathered}$	NOKTH	PACIFIC	N. ATL.	$\begin{aligned} & \text { INDO- } \\ & \text { PACIFIC } \end{aligned}$	
			ASLATIC	N. AMER.			
ATYLINAE	1	11	X	X	x	X ?	L-SL
NOTOTROPIINAE	2	~ 20	X	0	X	X	L(A)
LEPECH. ${ }^{\text {'INAE }}$	4	-34	X	x ?	X	X	A
ANATYLINAE	2	4	X	0	0	X	L
DEXAMININAE	7	-55	X	0	X	X	L-SL.
DEXAMINOC'INAE	1	1	0	0	0	X	1.
POLYCHERIINAE	2	-24	X	X	x	X	L-SL
PROPHLIANTINAE	3	~ 40	X	x	X	X	L-SLI.
Totals	22	-190					
AMPELISCOIDEA	4	-230	X	X	X	X	L-A

* Data updated froma Barnard \& Karaman (1991).
${ }^{+}$LEGEND: L = Littoral; SL - Sublittoral.; A - Abyssal.. X - common; X - species fow; 0-absent.
northwands along both Asiatic and North Anerican Pacific coasts, with its most primitive members (wilthin gerius Tritaeta) confuned to the Mediterranean and eastem North Atlantic regions.

With respect to local distribution, the North American Pacific coastal marine fauna here consists of 8 atylins, 3 polycheriins, and one prophliantin. Three species off lepechinellins occur at abyssal depths off the eastern Pacitic continental slope, from Central America north to Baja and southern California but, to date. none has been recorded lrom off Oregon or points northward (Barnard, 1973; Barnard \& Karaman, 1991). As noted previbusly in this text, of the \& regional species of Atydas, three species within the more primitive carinaras-levidensus sulygroup (i.e., A. caringrus, A. arlassovi, and A. bruggeni) do not extend south of the Bering Sea, and only A. levidensws reaches Califonia. Within the advanced collingi-sridehs subgroup, all four
species occur in the central region of British Columbia However, A. fridens and A. georgiarus do not extend nonth to the Bering Sea, bur occur southward to central Califomia. Of sewen atylin species recorded from coastal western Fircifte waters, A. ekmemi, A. rydori, and A. occidentalis, (advaned morphologiesd counterparts of A. Fevidernsus, A ridens, and A. collingi) also extend furthest southwards. The more southerly occumence, in North American Pacific waters, of phyleticatly advanced members of major laxonomic urits has been noled previously within subfanilies of the Phoxocephaloidea, espectally subfamily Metharpinitinat (Jaryett and Eousticid, 1994) and sublamily Pleustinae with it the Lencothoidea (Bousfield \& Hendrycks, 1984). The tvolutionary significance of this phenomenon is yet inconclusive, but possibly reflects the oyerall depressanteffect of low temperatures on rates of evolution, all other factors beingequal (Ekman, 1953).

The distribution of ampeliscoidean amphipods，consid－ ered to be close but more highly advanced and specialized phyletic counterparts of dexamimideans，stands in marked contrass（Table IV）．Through moditications of peraeopods 3－7，ampeliscoideans are able to ornstruct and live（in the ＂upside down＂fashion of polycheriins）within protective vertical tubes of their own construction．They thereby ex－ ploit，in vast numbers，the rich ryptonic and deposil Fomd resources on and atome sedimentary substrata． Ampeliscoideans occur abundantly alone all marinc conast－ lines，including the arctic and antarctic，bull relatively fe⿻⿰㇒乛小⿱⿰㇒一乂⿱一⿻上丨又斯 bave penetraled the deep sea（Table IV，colarnis 3－6）． However，relative to the de xaminoideans，the larger number of described species（column 2）is encomapassed by only 4 genera and one subfamily（column 1），threo－fourths in the essentially littoral－sublittoral genus Amperisca．This high species genus ratio implies a relatively low index of momph－ ological diversity and a relatively recent evolutionary his－ tory．This difference would suggest that the Dexaminoidea is，palaeohistorically，zan ofder supertamily group than the Ampeliscoidea．The most primitive members（c．g．olAplus） now exist in phyletically relict or semi－relict Cashion，still oocupying marine＂nestling＂niches that gammaroideans and other mone eurytopic and more successful ecological couth－ terparts have apparently for yet penetrated．

REFERENCES

Aldeman，A．L．，1936．Sone new and little known anophi－ pods of Califormia，Uniw．Calif．Puth．Zool．41：53－74． 51 figs．
Austin．W．C．，1985．An Annotated Checklist of Marine Invertebrates of the Cold Temperate Northeast Pacific． Khyotan Marine Laboratory，Cowichan Bay，B．C．Vols． I－III： 682 pp ．
Barnard，J．L．，1954．Marine Amphipola of oregon．Oregon State Monogr．Studies in Zonlogy．8：1－103， 33 pls．
，1956．Two rare amphipods from Califormia with notes on the genus．Alvfus．Bull．So，Calif．Acad．Sci， 55：35－43．
———1958．A new genus of dexaminid amphipod （marise Crustacea）from Califormial．Bull．So．Cal． Acad．Sci．57：85－90］．

1962．South Aulantic abyssal amphinods col－ lected by R．V．Vemi．Abyssal Crustacea．Vema Re－ search Series I：1－78， 79 figs．
，1964．Detp－sea Amphipoda（Crustacea）col－ lected by the R / V＂Wema＂in the eastern Pacific Opean and the Caribhean and Mediteranean Seas．Bull．Amer． Mus．Nat．Hist． 127 （1）： $1-45,33$ figs．
－1969a．The families and genera of tratine gaminaridean Amphipodar．Bull．U．S．Natu，Mus．271： 1－535， 173 figes．
－1969b．Gamunaridean Amphipoda ol the Rokky Intertidal of California：Montertey Bay to La Jolla．U．S． Natl．Mus．Bull．258：1－230， 173 figs．

1970a．The identily of Deramomica andPrin－ assus，with a revision of Dexaminidae（Amphiperda）． Crustaceana 19：161－180．
－19706．Sublittoral Gammatidea of the Hawai－ ian Islands．Staiths．Contr．Zool，34：1－286， 180 figs．
．1972a．The Marine Fauna of new Zealand： Algac－living Litioral Gammaridea（Crustacea Atriphi－ poda）．Metn．N．Z．Oceanogr，Inst．No．62：1－216， 100 figs．
＿1972b．Gammatidean Amphipoda of Austrat－ liat Fart I，Smiths．Contr，Zool．No．103：1－333， 194 flus．
－1973．Deep－sea Armphipoda of the genus Leprechincila（C－1stacea）．Smiths．Contr Zool．No． 133 ： 1－31， 12 figs．

1974．Gammaridean Amphipoda of Austra－ lia．Part II．Smiths．Contr．Zool．No．139：1－148， 83 fiss．

1975．Amphtpoda Gammaridea．pp 313－366， pls．70－85．in R．I．Smith \＆J．T．Car Non（eds）．Light＇s Manual．Intertidal Invertebrates of the Central Califor－ nia Coast．3rd edition，Univ，Calif，press，Berkeley，CA． 716 pp ．
－1979．Liltoral gammaridean Amphipoda from the Gulf of California and the Galapagos Islands．Smithes． Contr，Zool．271：1－149， 74 Figs，

改 G．S．Karaman，1991．The Families and Genera of Marine Gammaridean Amphipoda（Except Marine Gammaroids）．Rec．Austral，Mus ${ }^{\text {ri }}$ Suppl．13， Pts， 1 \＆2：1－866． 133 R1gs．
Bamard，K，H，1930．Amphipoda．British Anturctic（＂Terra Nova＂）Expedition，1910，Natural history Reports，Zool－ Ogy 8：307－454． 63 figs．
Bate．C．S．，1862．Catathgue orthe specimens of umphipodous Crustacea in the collection of the British Maseum，Lon－ don． $399 \mathrm{pp}, 58$ pls．
Bate，C．S．\＆J．O．Westwood，1863．A history of the British Sessile－Eyed Crustacea，London．I：1－507，thustr．
Bellan－Santitio，D，1975．Au sujet d＇une nouvelle espece dAtyhus（Amphipoda，Dexaminidae）de Mediteranee： Arybus massithensis n．sp．Boll．Mus．Civ．Stor．Natur． Verona 1：437－479， 2 pls． ＿1982．Fantly Dexaminidae．pp．212． 232．in S．Ruffo ed．The Asphipoda of the Mediter－ rancati．Mem．Inst．Oceanogr．Part I．Gummaridea （Acanthonotozomatidae to Gammaridae）No．13：212． 232.

Birstein，J．A．，\＆M．E．Vinogradow，1955．Pelagicheskei ganmuridy（Amphipoda－Gammaridea）Kurilo－Kam－ chatskoi Vpadiny，Akad．Nauk SSSR，Inst．Okeanol． Trud．12：210－287， 35 figs．
Boeck，A．，1971．Bidrag til Calilorniens amphipodenfauna， Forhandl．Vidensk．Selsk．Cbristiana 1871：32－51， 1 pl．
＝1876．De Skandinaviske og Artiske Amphipoder． $712 \mathrm{pD}, 32 \mathrm{pls}$ ．Cliristiana：A．W．Brogger．
Bousfichd．E．Las 1958，Ecological Inyestigations on sea shore invertebrates of the Pacilic Coast of Canada．Bull． Nat1，Mus，Canada 147：104－115．
1963. Ifivestigations on sea-shore invertebrates of the Pacific coast of Canada, 1957 and 1959. I. Station List, Bull. NatL. Mus. Can. 185; 72-84. 1968. Studies on littoral marine invertebrates of the Pacific coast of Cana, 1964. 1, Station list. Natl Mus, Cant. Bull. 223: 49-57.
-1979a. A revised classification and phylogeny of amphipod crustaceans. Trans. Roy. Soc, Canada 4: $343-390$.
Bousfiedd, E. L. 19790. The amplipod superlamily Gammaroided in the northeastern Pacific region: systematics and distributional ecology. Bulf. Biol. Soc. Wasth. 3: 297-359. 12 4igs.
, 1982. Auphipoda, Gammaridea in Synopsis and Classification of Living Organisms. McGraw-Hill, New York, yol. 2: 254-285.
1983. An updated phyletic classification and palacohistory of the Amphipoda. Crustacean 1ssues. 1: 257-278.
\& E. A. Hendryck 5s, 1994. The Amphipod Superfamily Leucothoidea on the Pacilic Coast of North America. Family Pleustidae: Sublamily Pleustinac. Systematics and Biogeography. Amphipacifica I(2): 3-694 38 figs.
and D. E. McAllister, 1963. Station List of the National Museum marine biohyical expedition to south eastern Alaska and Prince William Sound. Natl. Mus. Can. Bull. 183: 76-103.
and N. E. Jarrett, 1981, Station lists of marine biological expeditions of the National Museum of N atural Sciences in the North American Pacilic coastal regions, 1966 to 1980 , Syllogeus No. 34, 1-66.
\& C. P. Staude, 1994. The Impact of J. L. Bari= and on North American Pacilic Amphipad Research: A Tribule. Amphipacifica J(1): 3-16.
Bulycheva, A. I., 1952. Nowye vidy tookuplawov (Amphipoda: Gammaridea) iz Japonskovo Morei. 11. Akkad. Nauk SSSR. Trud, Zool, Inst. 12: 195-250., 39 figs. , 1955. Novye vidy buk oplavov (Aunphipoda, Gammaridea) iz Japanskovo Morei. II. Trud. Zool. Inst. Akad. Nauk SSSR. 2I: 193-207. (In Russian). 1957. Amipody (Aurophipoda) severozapadroi chasti Japanskovo Movei. Akad. Nauk SSSR, Tssled. Dal'nev. Morei, 4: 85-126, 3 Tigs.
Cadien, D. B.. 1991. List of the Matine Aemphijpod daunas of the temperate and bortal northeastern Pacific Ocean. including literature recordsofoccurrence between Bahia San Quintin, Baja Calilornia, and the south side of the Aleutian Istands, incorporating nomenclatural chatnges listed in Banadd \& Karaminn, 1991, SCAMIT Tech. Publ Los Angeles, Calinomiad, Sept., 1991.21 ppn lisd. Caman, W. T. 1898 . On a coblection of Crustacea From Fuget Sound. Ann. N. Y. Acad. Sci. Xl (I3): 259-292. pls. 31 -34.
Chilen, C, 19/4. A new amphipodan penus and species (Family Dexaminidac) From new Zealand. Jour. Linn.

Soc. London, Zool, 32; 331-336, 2 pls.
Conlan, K. E., 1983. The amphipodsuperfarnily Corophioides in the northeastem Pacific region. 3. Family Tsaeidae: systematics and distributional ecology. Publ. Nat. Sci.. Nall. Mus. Nat. Sci.. Canada 4: 1-75, 36 figs.
Dunbar, M. J. 1954. The amphipod Crustacea of Ungava Bay, Canadianedsternarctic, Jour. Fish. Res. Bd. Canada 11:709-798, 42 figs.
Dickinson, J. J., A. A. G. Carey, Jr, 1978. Distribution of gammarid Amphipota (Crustacea) on Cascadia Abyssal Plain (Oregon). Deep-Sea Research 25:97-106, 2 figs. Ekman, S., 1953. Zoogeography of the Sea. Sidgwick \& Jackson, London: 417 pp , illustr.
Fabricius, J. C., 1783. Entomologica systematica emendata et aucta 2:519 pp. Hafniae: Christ. Gotel. Proft.
Gamo. 1981. A new deep sea Amphipoda, Lepechinella sagamiensis sp, raoy, from Satami Ray. Proc. Jap. Soc. Syst. Zowl. 20: 16-20, 2 tigs.
Giles, G. ML. 1888. Futher notes on the Ampthipoda of Indian waters. Natural history notes from H. M.'s Indiark marine survey steamer "Investigator", commander Alfred Carpenter, R.N. D.S.O. commanding. No. 15. Jour. Asiatic Soc. Bengal 57: 220-255, pls. 6-12,
Goes. A. 1866 . Crustacta Amphipota maris Spetebergiam atluentis, cum speciebus allis arclicis enumerat. Orv. Kongl. Ventensk. Akad. Forh. 1865:517-536, pls. 36-41.
Haswell, W, A.-1 1879. On some additional new genera and species of amphiphdous crustaceans. Proc. Lim, Soc. N, S. Wales 4: $319-350$. pls. 18-24.

- 1885 . Notes on the Australian Amphipoda. Eroc. Linta. Soc. N. S. Wates 9: 993-1000, pls. $48-49$.
Gurjanova, E. Fri 1938. Amphipoda Gammaridea of Sialkla Bay and Sudrukbe Bay (Japan Sea). Rep. Japin Sea Hytrobiol Explor Zonl, Inst. Acad. Sci. USSR in 1934. 1:241-404. (in Russian)

1951. Amphipoda of the Seas of the

USSR. Opred. Faune SSSR, Akad. Nauk 41:1-1029, 295 figs. (In Russian)
Hirayana, A. 1984 ar. Taxomomic Studies on the shallowwater ganmaridean Amphipoda of West Kyusho, Japan. III. Dexaminidae (Poycheria and Poradexamine). Publ. Seto Mar. Biol. Lab, XXIX, Nos. 4/6: 187-230. 1984b. Tixonomic Studies on the Shatlow Water Gammaridean Amphipoda or West Kyusthu Japan. IV. Dexaminidae (Guertea), Eophliantidae, Eusiridae, Hatutoriidae, Hyalidac, Ischyroceridac. Publ. Seto Mar. Biol. Laty. wol, 30. Nos. U/3:1-53.
, 1986a. Marine Gammaridean Amphiporla (Crustacea) Prom Hong Kong II. The Family Dexamistide, Proc. Second Int. Mar. Biol. Workshop: The Marine Flora and Fauna of Hong Kong and Southern China, Hong Kong. 1986. (B. Morlon, ed.), Hong Kony Univ. Press: $487-501$, 9 figs.
. 1986th. A new alylid species (Crustitcea: Amphipoda) Irom Otsuchi bay, Northeast Japan. Prak. Jupan Soc. Syst. Zond. 33: 4-10.

Holman, H., and L. Watling. 1983. Amphiporda from the southern oceani; families Colomastigidae, Dexaminidae, Leucothoidae, Liljeborgidade, and Scbidac. Biology of the Antarctic Seas XIII. Antarctic Research Series 38: 215-262, 3.5 figs.
Iric, H., 1960. Amphipoda in Uchida et all, 1960: Encycl. Zoologica Illustrated in Colours. Youl. [V. I -247. Hokuryukan, Tokyo.
Ishimanu, S.-I.. 1987. Description of two new species of Ghermear (Crustacea, Amphipoda, Dexaminidade) Erowi Japan, with tentative revision of subfamily Prophliantidae. Jour, Nat. Hist. 21: 1395-1414.

- 1994. A Catadogue of Gatmmaridean and Ingolimenidean Amphipoda Recorded from the Vicinity of Japith.

Rept, Sado Mar. Biol. Sta., Niigata Univ, 24; 29-86.
Jartett, N. Es \& E. L. Bousfleld, 1994. The Amphipod Superfantily Phoxgophatoidea on the Pacilic Coast of North America. Famaly Phoxocephalidae. Part I. Mel haminiinae, New Subfanily. Amphipacilica If I): 58140. 31 figs.

Leach, A. 1814. Crustaceology. Appendix. The Edinburgh Encyclopaedia 7: 29-434.

- , 1815. A tabular wiew of the cxternal characters of four classes of animats which Linne arranged under Insecta; with the distribution of the genera composing three of these classes into onders \&c, and descriptions of several new genera and species. Trans. Linn. Soc. London 11: 306-400.
Ledoyer, M. 1979a. Les gammariens de la pente externe du Grande Récif de Tulear (Madagascar) (Crustacea: Amphipoda). Mern. Mus. Civ. Stor, Nat. Verona 2: I. 150.
- 1979b, Expedition Rumphits 11 (1975). Crustacés parasites, commensaux, etc. (Th, Monodet R. Serene, ed.). VI. Ctustace Amphipodes Gamumariens. Bull. Mus, Nat. Hisl., Paris 4 ser. 1, 1979, sect. A, n° 1: 137-181.
- 1982. Crustaces amphipodes gammariens. Familles des Acanthonotozomatidae a Gammaridae. Panis. Cente National de la Recherches Scientitique: Frune de Madatgascat, $59(1): 1-598$.
- 1984. Les Gammarions (Crustacea, Amphi= poda) des herbiers des phanerogames marines de Nouvefle Caledonie (region de Noumea), Mem. Mus. Natl. d'Hist. Nat, new series, ser. A zoologie, 129: II 13 pp.r 48 [igs.
Lincoln, R. J., 1979. British Marime Amphipoda: Gammaridea. Brit. Mus. (Nat. Hist.) Publ. No. 818: 1-688, 280「igs.
Lowry, I. K., 1981. A redescription of Sphatrophishalmus grobbent Spandl based on type material from the Red Sea and mew material from the Great Bamier Recf. (Aumphipoda, Dexaminidte). Crustactata 41(2): 190-198.
McKimey, L. D. 1980 . Four new and unusual amphipods from the Gulf of Mexico and Caribhean Sea. Proce Biol.

Soc. Wash. 93: 83-103.
Metzger, A, 1871 . Die wirbellosen Meeresthiere der ostfriesischen Kuste. Jahrsb. Naturh. Gesellsh . Hannoyet 21: 20-34.
Mills, E. L., 1961. Amphiped crustaceans of the Pacific Coast oll Canada. I. Family Atylidae. Natl. Mus. Can. Bull. 172; 13-33.
Milne-Edwards, H., 1830, Extrait de recherches pour seryir a I 'historte naturelle des crustaces amphipodes. Ann. Sci, Natur. 20: 353-399. pls 10, 11.
More, P. G., 1984, Gammaridean Amphipoda (Crustacea) collected by the yacth Tulip from surface waters of the Arabian Sea. Jowr, Nat. Hist. 18+ $369-380$.
Nagata, K., 1961. A new atylid amphipod from Japan. Annot Zool. Japan. 34: 216-218.
—. 1965. Amphipoda Gammanidea. In M. Iwasa \& K. Nagata's Illustrated Encyclopedia of the Fauna of Japan: \$59-572. (in Japanese)
Nichols. 1939. The Frophliantidae. A proposed new fam. ily of Amphipoda, with description of a new genus and four new species Rec. S. Austral. Mus. 6: 309-334, 10 figs.
Norman. A.. 1868. On Crustaceat Amphipoda new to science or to Britain. Arm. Mag, Nat. Hist. Ser. 4, 2: 411421 , pls. 21, 22, \& pl. 23, figs. 1-11.
Okado, M., 1993. The occurrence or Atyhus elmani (Crust acea, Amphipoda, Gammaridea) from Southern Hokkaido, Japan. in Bull. Fac. Fish. Hokkaido Univ. , 44 (1): 6-14., figs. 1-4.

Oldevig. H., 1959. Arctix, subarctic, and Scandinavian amphipods on the collections of the Swedish Natural History Musenmin Stockholm. Goteborgia Kunglia Vetenskaps-Vitterheyts-Samhalles Handlinger(6B) 8 (2): 1-132.

Pirlot, 1933. Les Ampthpodes de I'expedition du Siboga. Denxieme partie. Les amphipoder gammarides II. Les amphipodes de la mer profonde. 1 (Lysianassidae: Stegocephalidac, Stenothoidae, Pleustidae, Lepechinelldac), Siboga-Expedition, Monogr. 33: 115-167, figs 35-60.
Sars, G. O., 1895. An Account of the Crustacea of Norway. 1. Amphipoda. Christiana \& Copenbagen. 711 pp. $240 \mathrm{pls}$.8 fuppl.
Schellenberg, A.e 1925 , Crustacea VIII, Amphipoda. vol. 3. pp, 111 -204, 27 figs . In W. Michaelson (ed.). Beitr. Kennt. Meerest. Westafrikas. Hamburg: L. Friedrichsohn \& Co.
-1926. Die gammariden der Deutschen Sudpolar-Expedition 1901-1903. Deutsches SudpolarExpedition 18: 235-4214, 68 figs.
, 1928. Zomogical Results of the Cambridge Expedition to the Suez Canal, 1924. 35, Report on the Amphipoda. Trans. Zool Soc. London, 22(5): 693 . 692, figs. 198-209.
__, 1931. Gammariden und Caprethiden des Magellangebietes, Sudgeorgiens und der Westantarktis. Further Zoological Results of the Swedish Antarctic Expedition 1901-1903, 266): 290 pp., 1 pl., 136 figs. 1938. Litorale Amphipoden des tropischen Pazifiks. Kungl. Svenska Vetensk. Handi, (3) 16(6): $105 \mathrm{pp} ., 48$ figs.
Sctram, F, R., 1986. Crustaved. Oxford University Piess, New York, 606 ppr, illustr.
Shoemaker, C, R., 1920. The amphipods of the Canadian Arctic Expedition, 1913-1918. Report of the Canadian Arctic Expedition, 1913-1918, 7E: 30 pp, 6 ligs., app. -, 1985. Amphipoda collected at the Arcic Laboratory, Office of Naval Research, Poinl Barrow, Alaska, by G. E. McGinitie. Smiths, Misc. Coll. 128 (1): 1-78, 20 higs.

Sivaprakasam, T. E., 1970. Description othtyhus (Kameharydas)processicer sp, nov, (Amphipoda:Dexaninidae) from the Gulf of Mannar (sic), India. Jour. Mar. Biol. Assoc. India 10: 93-96. I fig.
\$kogsberg, T., and G. H. Vansell, 1928. Structure and Behaviour of the amphipod, Polycheria ostorni. Proc. Cal. Acad, Sci., ser. 4, 17: 267-295, 26 figs.
Spandl, $\mathrm{H}_{1,}$ 1923. Amphipoden der 'Pola'-Expedition in das Rote Meer. Akad. Wissensch. Wien, An又, 60 Jaht ${ }^{*}$ gatg. 1923 (in 3 parts): 17-20, 87-89, 111-112.
Staude, C. F., 1986, Syslematics and Bethavioural Ecology of the amphipod genus Paramoera (Gammaridea: Eusiroidea: Pontogeneidae) in the eastern North Pacific. PhD thesis. Univ, Washinglon Press., Seatte. 511 pp .
——1987. Amphipoda: Gammaridea pe. 346391. in E. Kozloff (ed.). Marine Invertebrates of the Pacific Northwest. Univ. Wash. Press, Seattle, $\$ 11$ pp,
Stebbing. T. R. R.. 1875. On some new exolic sessile eyed crustaceans. Ann. Mag. Nat, hist., ser. 415: 184-188. pl 15A.
1888. Report on the Amphipoda collected by H.M.S. Chaltenger during the years 1873 -76. Re port on the Scientific Results of the Voyage of H.M.S. Chatlenger During the Years 1873-1876, Zology 29: $1737 \mathrm{pp}-210 \mathrm{pls}$. London. Eyre \& Spottiswoodie. , 1899. Revision of Amphipoda. Ann. Mag. Nat. Hist. ser. 73: 350.
-, 1906. Amphipoda I. Ganraaridea. Das
Tierreich, Berlin. 21: 806 pp., 127 tigs.
1908. On [wo new species of northert Amphipola. Jour. Lint, Soc, London, Zool. 30: 191 197. pls. 27-28.

Stephensen, K., 1944. Some Japanese amphipods, Vidensk, Medd, Dansk Naturh. For. 108: 25-88, 33 figs.
Thurston, M., 1974. Crustacca Amphipoda from Graham Land and the Scotia Arc, collected by Operation Tabariti and the Falkland Islands Dependencies Survey, 1944-39. Britisli Antarclic Survey Scientific Reports 85: 89 pp. 28 figs.

- 1980. Abyssal berthic Amplipoda (Crustatea) from the cast weland basin 2. Lepechinella and an allied new genus. Bull, Brit. Mus. Nid. Hist, (Zool) 38: 69-87: 12 Gभr.
Tzvetkova, N. L. 1967. Ot the fauna and ecology of amphipods (Amphipoda, Gammaridea) of Possjet Bay: (Sea of Japan). Acad Sct. USSR. Zool Inst. Issled. Fauny Morci 5: 160-195, 7 figs.
Vader, W., 1969. Herkenming en biohoop van de WestEuropese Dexaminidae (Crustabea-Amphipoda). Zool. Bidj. 11, Bidj. Faun. Nedertand 1: 59-67, 2 figs.
, 1983. Prehensile percopods in gammaridean Amphipoda. Sarsia 68: 139.148.
Walker, A, O.i 1904. Report on the Amphipoda collected by Protessor Herdman, al Ceylon, in 1902. Repore to the Govemment of Ceylon on the Pearl Oyster Fisheries of the Gulf of Manaar. Suppl. Rpl. 17: 229-300.
- 1905, Manine Crustaceans XVI. Amphipoda. Fauna and Geographyy of the Maldive and Laccadive Atchipeldugos, 2, Suppl. 1: 923-932, 2 figes. I pl.

LEGEND FOR FLGURES

A1-antenna 1; A2 - antenna 2; ABD - abdomen; ACC FL - accessory flagellum; BR - branchia (coxal gill): CX - coxa; EP - epimera (pleon plate); GN - grathopod; HD - head; JV - juvenile; LL lower lip; LFT - left; MD - mandible; MX maxilla: MXPD - maxilliped; PL - pleopod; PLP palp; RT - right; T - telson; UL - upper lip; U uropod; UROS - urosome; X - enlarged; O - male; O - female.

[^0]: ${ }^{1}$ Researcher Emeritus, Canadian Muscum of Nature, Otawa. Ontario KIP 6P4
 ${ }^{2}$ R. R \#1, Burrill's Rapids, Ontario K0G IB0

[^1]: * Arylus orientadas Hirayama not itchuded

[^2]: Pleopod 5 medium, rami-12-scgmented; pleon plates I3, hind comers squarish or obtuse. Uropods 1 , peduncte, anterior (outer) margin richly setose, apicial spines of rami elongate. Uropod 2, inner ramus the short, inner margin with 2 medial long spines. Uropod 3, oter matgin shorter, outer margin 4-5 spinose.

 Telson, lobes slender, basal $1 / 4$ fused, margins with 7.8 short spines, apices acute.

 Male. (50 mon): Eye very large, broadly feversereniform, covering $5 / 6$ theat width. Antennal 2 longer than antenna 1, brush selte present on the posterior margin ol peduncular segment 2 , anterna 1 , and the anterior margin of peduncular segment 3 最 4 of antenna 2; 17agellum lacking feeding sctac.

 Gnathopod It propod more slender and palm virtually lacking; gnathopod 2, propod longer and mone slender, and palm very much shorter, than in female.

 Pleopods, peduncles strong, massive, mearly 2X longer than in female; split-tipped clothespin spines on 5-6 proximal segments of inner ramus. Urosome, mid-dorsal carina elevated, thot mucromate bebind; fused urosome segments 2昆 3 with mid-dorsal notch. Uropod 2, inner margin of peduncle with a tew plumose setac; inner margin of inner ramus with 3 slender spines. Uropod 3, outer ramus slightly

